Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endourol ; 36(5): 694-702, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34915736

RESUMO

Introduction: About 1 in 11 Americans will experience a kidney stone, but underlying causes remain obscure. The objective of the present study was to separate idiopathic calcium oxalate stone formers by whether or not they showed positive evidence of forming a stone on Randall's plaque (RP). Materials and Methods: In patients undergoing either percutaneous or ureteroscopic procedures for kidney stone removal, all stone material was extracted and analyzed using micro-CT imaging to identify those attached to RP. Twenty-four-hour urine samples were collected weeks after the stone removal procedure and patients were off of medications that would affect urine composition. The endoscopic video was analyzed for papillary pathology (RP, pitting, plugging, dilated ducts, and loss of papillary shape) by an observer blinded to the data on stone type. The percent papillary area occupied by RP and ductal plugging was quantified using image analysis software. Results: Patients having even one stone on RP (N = 36) did not differ from non-RP patients (N = 37) in age, sex, BMI, or other clinical characteristics. Compared with the non-RP group, RP stone formers had more numerous, but smaller, stones, more abundant papillary RP formation, and fewer ductal plugs, both by quantitative measurement of surface area (on average, three times more plaque area, but only 41% as much plug area as in non-RP patients) and by semiquantitative visual grading. Serum and blood values did not differ between RP and non-RP stone formers by any measure. Conclusions: Growth of many small stones on plaque seems the pathogenetic scheme for the RP stone-forming phenotype, whereas the non-RP phenotype stone pathogenesis pathway is less obvious. Higher papillary plugging in non-RP patients suggests that plugs play a role in stone formation and that these patients have a greater degree of papillary damage. Underlying mechanisms that create these distinctive phenotypes are presently unknown.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Oxalato de Cálcio/análise , Humanos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/etiologia , Cálculos Renais/patologia , Medula Renal/patologia , Ureteroscopia/métodos , Microtomografia por Raio-X/efeitos adversos
2.
Nucleic Acids Res ; 46(18): 9647-9659, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30202880

RESUMO

Adenosine deaminases that act on RNA (ADARs) convert adenosine to inosine within double-stranded regions of RNA, resulting in increased transcriptomic diversity, as well as protection of cellular double-stranded RNA (dsRNA) from silencing and improper immune activation. The presence of dsRNA-binding domains (dsRBDs) in all ADARs suggests these domains are important for substrate recognition; however, the role of dsRBDs in vivo remains largely unknown. Herein, our studies indicate the Caenorhabditis elegans ADAR enzyme, ADR-2, has low affinity for dsRNA, but interacts with ADR-1, an editing-deficient member of the ADAR family, which has a 100-fold higher affinity for dsRNA. ADR-1 uses one dsRBD to physically interact with ADR-2 and a second dsRBD to bind to dsRNAs, thereby tethering ADR-2 to substrates. ADR-2 interacts with >1200 transcripts in vivo, and ADR-1 is required for 80% of these interactions. Our results identify a novel mode of substrate recognition for ADAR enzymes and indicate that protein-protein interactions can guide substrate recognition for RNA editors.


Assuntos
Adenosina Desaminase/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Edição de RNA , RNA de Cadeia Dupla/genética , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Animais , Animais Geneticamente Modificados , Ligação Competitiva , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Desaminação , Perfilação da Expressão Gênica , Inosina/metabolismo , Mutação , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...