Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biomater ; 2022: 7098989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071953

RESUMO

In recent years, the development of biomedical monitoring systems, including respiration monitoring systems, has been accelerated. Wearable and implantable medical devices are becoming increasingly important in the diagnosis and management of disease and illness. Respiration can be monitored using a variety of biosensors and systems. Auto-charged sensors have a number of advantages, including low cost, ease of preparation, design flexibility, and a wide range of applications. It is possible to use the auto-charged sensors to directly convert mechanical energy from the airflow into electricity. The ability to monitor and diagnose one's own health is a major goal of auto-charged sensors and systems. Respiratory disease model output signals have not been thoroughly investigated and clearly understood. As a result, figuring out their exact interrelationship is a difficult and important research question. This review summarized recent developments in auto-charged respiratory sensors and systems in terms of their device principle, output property, detecting index, and so on. Researchers with an interest in auto-charged sensors can use the information presented here to better understand the difficulties and opportunities that lie ahead.

2.
Adv Pharmacol Pharm Sci ; 2022: 9073837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492808

RESUMO

Electrospinning enables simple and cost-effective production of polymer nanofibers from different polymer materials. Drug delivery systems are capable of achieving maximum drug treatment benefits by significantly reducing adverse complications. Electrospun nanofibers have recently attracted considerable attention owing to their distinctive properties, including flexibility and biocompatibility. The implementation of functional constituents within nanostructure fibers blends is an effective technique for the administration of a variety of drugs in animal research, broadening the nanofiber capability and reliability. The nanofibrous mesh and its various application purposes are discussed in terms of a summary of recent research, emphasizing the ease of streaming and a large number of combinations of this approach, which could lead to a breakthrough in targeted therapy.

3.
Appl Bionics Biomech ; 2022: 1953861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186119

RESUMO

Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering. One of the most effective of these methods is electrospinning. Numerous nanofibrous scaffolds have been constructed over the last few decades for tissue repair and restoration. The current review gives an overview of attempts to construct nanofibrous meshes as tissue-engineered scaffolds for various tissues such as bone, cartilage, cardiovascular, and skin tissues. Also, the current article addresses the recent improvements and difficulties in tissue regeneration using electrospinning.

4.
J Med Syst ; 43(7): 229, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197587

RESUMO

Powered exoskeleton technology helps turns dreams of recovering mobility after paralysis into reality. One of the most common problems encountered in the use of powered exoskeletons is the detection of the motion intentions of the user. Many approaches to conquering this problem have been developed using Electromyography (EMG) sensors, Electroencephalography (EEG) sensors, Center of Pressure (COP), and so forth. When a method, such as the surface EMG, is contaminated with noise during acquisition, it is important to process that raw EMG signal. Doing so usually takes time, and time delays in such a system can lead to a loss in synchronization between the wearer and the exoskeleton. Many algorithms have been developed for data acquisition and the filtering of raw EMG signals as well as accelerometer data. Our approach involves designing an almost sensor-less low limb exoskeleton that is powered by an electric Direct Current (DC) motor, and the same motor is used to detect motion via monitoring the voltage and the current variation. Experimental results are obtained for the actuating knee flexion-to-extension then extension-to-flexion of a sitting person using the National Instrument (NI) MyRIO as a data acquisition system with NI-LabView. The results support the hypothesis that the developed system can detect human motion and drive the motor in the necessary direction without the use of uncomfortable electrodes (sensors) and their connections. Additionally, the system supported the wearer to move his leg up (extension) without having too much effort to do so. In order to identify muscle activation with the change in the angle along the sagittal plane, an accelerometer has been attached to the system. The proposed approach could help open a new pathway along which researchers could develop low-cost and easy-to-wear powered exoskeletons which could emulate precisely the normal gait of a human.


Assuntos
Exoesqueleto Energizado , Articulação do Joelho , Desenho de Prótese/instrumentação , Eletricidade , Humanos , Músculo Esquelético/fisiologia , Fatores de Tempo , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...