Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36236087

RESUMO

The effect of ethynylene or ethynylene-thiophene spacers on the band gap of alternating polymers, containing 4,9-naphthothiadiazole units as an acceptor and 2,7-linked fluorene repeat units as a donor, were investigated. The Sonogashira coupling reaction was employed to prepare the two novel copolymers, namely ((9,9-dioctyl-fluorene)-2,7-diethynylene-alt-4,9-2,1,3-naphthothiadiazole (PFDENT) and poly(5,5'-(9,9-dioctyl-fluorene-2,7-diyl)bis(ethynyl-2-thienyl)-alt-4,9-(2,1,3-naphthothiadiazole) (PFDTENT). The optical, electrochemical and thermal properties of the two obtained polymers were widely investigated and compared. Both resulting polymers showed low solubility in common organic solvents and moderate molecular weights. It is believed that the introduction of acetylene linkers rather than acetylene-thiophene spacers on the polymer chains reduces the steric hindrance between the donor and acceptor units which leads to the adoption of more planar structures of polymeric chains, resulting in decreased molecular weights of the resulting conjugated polymers. Thus, both ethynylene-based polymers and ethynylene-thiophene-based polymers showed red-shifted absorption maxima compared to their counterpart (thiophene-based polymer), owing to the adoption of more planar structures. Optical studies revealed that the new ethynylene and ethynylene-thiophene-based polymers displayed low band gaps compared to their thiophene analogue polymer PFDTNT. Both resulting polymers showed good thermal stability. X-ray diffraction (XRD) patterns of both polymers revealed that PFDENT and PFDTENT possessed an amorphous nature in solid state.

2.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616512

RESUMO

This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by the molecular orbital theory (MOT). The intrinsic characteristics that classify conjugated polymers as semiconducting materials come from the EBG of organic molecules. A quinoid mesomeric structure (D-A ↔ D+ = A-) forms across the major backbones of the polymer as a result of alternating donor-acceptor segments contributing to the pull-push driving force between neighboring units, resulting in a smaller optical EBG. Furthermore, one of the most crucial factors in achieving excellent performance of the polymer is improving the morphology of the active layer. In order to improve exciton diffusion, dissociation, and charge transport, the nanoscale morphology ensures nanometer phase separation between donor and acceptor components in the active layer. It was demonstrated that because of the exciton's short lifetime, only small diffusion distances (10-20 nm) are needed for all photo-generated excitons to reach the interfacial region where they can separate into free charge carriers. There is a comprehensive explanation of the architecture of organic solar cells using single layer, bilayer, and bulk heterojunction (BHJ) devices. The short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) all have a significant impact on the performance of organic solar cells (OSCs). Since the BHJ concept was first proposed, significant advancement and quick configuration development of these devices have been accomplished. Due to their ability to combine great optical and electronic properties with strong thermal and chemical stability, conjugated polymers are unique semiconducting materials that are used in a wide range of applications. According to the fundamental operating theories of OSCs, unlike inorganic semiconductors such as silicon solar cells, organic photovoltaic devices are unable to produce free carrier charges (holes and electrons). To overcome the Coulombic attraction and separate the excitons into free charges in the interfacial region, organic semiconductors require an additional thermodynamic driving force. From the molecular engineering of conjugated polymers, it was discovered that the most crucial obstacles to achieving the most desirable properties are the design and synthesis of conjugated polymers toward optimal p-type materials. Along with plastic solar cells (PSCs), these materials have extended to a number of different applications such as light-emitting diodes (LEDs) and field-effect transistors (FETs). Additionally, the topics of fluorene and carbazole as donor units in conjugated polymers are covered. The Stille, Suzuki, and Sonogashira coupling reactions widely used to synthesize alternating D-A copolymers are also presented. Moreover, conjugated polymers based on anthracene that can be used in solar cells are covered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...