Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765370

RESUMO

Salinity affects the morphological, physiological, and biochemical characteristics of several plant species. The current study was conducted to investigate differential salt tolerance potentials among ten duckweed clones under different salt-stress conditions. Morphological and physiological parameters, including fronds length, fronds number, root length, root number, Na+/K+, chlorophyll, proline contents, and fresh harvest weight, were recorded for each of the ten duckweed clones collected from different Saudi Arabia regions. Additionally, the expression patterns of seven salt-related genes were monitored in a salt-tolerant duckweed genotype. The results show that the Madinah-2 (Spirodela polyryiza) and Al-Qassim (Landoltia punctata) clones presented higher performances for all the tested morphological and physiological parameters compared to other genotypes under salt-stress conditions. At concentrations greater than 150 mM NaCl, these aforementioned traits were affected for all the genotypes tested, except Madinah-2 (S. polyryiza) and Al-Qassim (L. punctata) clones, both of which exhibited high tolerance behavior under high salt conditions (200 mM and 250 mM NaCl). The principal component analysis (PCA) showed that the first five principal components accounted for 94.8% of the total variance among the studied traits. Morphological and physiological traits are the major portions of PC1. Moreover, the expression pattern analysis of NHX, BZIP, ST, and KTrans transcript revealed their upregulation in the Al-Qassim clone under salt-stress conditions, suggesting that these genes play a role in this clone's tolerance to salt-induced stress. Overall, this study indicates that the Al-Qassim clone could be used in a brackish-water duckweed-based treatment program with a simultaneous provision of valuable plant biomass.

2.
Plants (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34961065

RESUMO

The development of salt-tolerant tomato genotypes is a basic requirement to overcome the challenges of tomato production under salinity in the field or soil-free farming. Two groups of eight tomato introgression lines (ILs) each, were evaluated for salinity tolerance. Group-I and the group-II resulted from the following crosses respectively: Solanum lycopersicum cv-6203 × Solanum habrochaites and Solanum lycopersicum M82 × Solanum pennellii. Salt tolerance level was assessed based on a germination percentage under NaCl (0, 75, 100 mM) and in the vegetative stage using a hydroponic growing system (0, 120 mM NaCl). One line from group I (TA1648) and three lines from group II (IL2-1, IL2-3, and IL8-3) were shown to be salt-tolerant since their germination percentages were significantly higher at 75 and 100 mM NaCl than that of their respective cultivated parents cvE6203 and cvM82. Using the hydroponic system, IL TA1648 and IL 2-3 showed the highest value of plant growth traits and chlorophyll concentration. The expression level of eight salt-responsive genes in the leaves and roots of salt-tolerant ILs (TA1648 and IL 2-3) was estimated. Interestingly, SlSOS1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated in leaves of both TA1648 and IL 2-3 genotypes under NaCl stress. While SlHKT1.1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated under salt stress in the roots of both TA1648 and IL 2-3 genotypes. Furthermore, SlSOS2 and SlSOS3 genes were upregulated in TA1648 root and downregulated in IL 2-3. On the contrary, SlSOS1 and SlHKT1.2 genes were upregulated in the IL 2-3 root and downregulated in the TA1648 root. Monitoring of ILs revealed that some of them have inherited salt tolerance from S. habrochaites and S. pennellii genetic background. These ILs can be used in tomato breeding programs to develop salt-tolerant tomatoes or as rootstocks in grafting techniques under saline irrigation conditions.

3.
Plants (Basel) ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834801

RESUMO

Duckweeds, or Lemnaceae, are widespread aquatic plants. Morphology-based identification of duckweed species is difficult because of their structural complexity. Hence, molecular tools provide significant advantages for characterizing and selecting species or clones for sustainable commercial use. In this study, we collected and characterized ten duckweed isolates from nine different regions in Saudi Arabia (SA). Based on the morphological characterization and phylogenetic analysis of intergenic spacer sequences of chloroplast DNA using six barcoding markers, the clones were classified into three genera, represented by seven species: Lemna gibba L., Lemna minor L., Lemna japonica Landolt, Lemna aequinoctialis Welw., Lemna perpusilla Torr., Spirodela polyryiza (L.) Schleid., and Landoltia punctate G. Mey. Lemna gibba was revealed to be a distinct dominant duckweed species in many regions of SA. Five barcoding markers showed that L. gibba, L. minor, and L. punctata were the most widely distributed species in the country. However, L. punctata, L. perpusilla, and S. polyryiza were the dominant species in the Al-Qassim, Madinah-1, and Madinah-2 regions, respectively. Moreover, the morphological traits revealed variations for these clones, relative to other studied duckweed clones. According to the results obtained in this study, three out of six plastid markers (trnH-psbA, matK, and atpF-atpH) helped to identify the dominant duckweed species in Saudi Arabia. Further evaluation based on adaptability, molecular genetic studies, and functional genomics is needed for these species to be used at the commercial level in Saudi Arabia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...