Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 17(2): 1455-459, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29687984

RESUMO

Herein, the fabrication and characterization of highly sensitive and selective ethanol gas sensor based on CuO nanodisks is reported. The CuO nanodisks were synthesized by facile hydrothermal process and detailed characterization revealed the well-crystallinity, high-purity and high density growth of the prepared material. To fabricate the ethanol gas sensor, the prepared nanodisks were coated on alumina substrate. The fabricated sensor exhibited high-sensitivity and the recorded gas response (resistance-ratio), response time (τ res) and recovery time (τ recov) were 6.2, 119 and 35 s, respectively for 100 ppm of C2H5OH at 300 °C. Further, the fabricated sensor shows high selectivity towards ethanol gas compared to H2 and CO gases.

2.
Nanomicro Lett ; 7(2): 97-120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-30464961

RESUMO

Because of the interesting and multifunctional properties, recently, ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors. Thus, ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. The presented review article is focusing on the recent developments of NO2 gas sensors based on ZnO nanomaterials. The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms. Basic gas sensing characteristics such as gas response, response time, recovery time, selectivity, detection limit, stability and recyclability, etc are also discussed in this article. Further, the utilization of various ZnO nanomaterials such as nanorods, nanowires, nano-micro flowers, quantum dots, thin films and nanosheets, etc for the fabrication of NO2 gas sensors are also presented. Moreover, various factors such as NO2 concentrations, annealing temperature, ZnO morphologies and particle sizes, relative humidity, operating temperatures which are affecting the NO2 gas sensing properties are discussed in this review. Finally, the review article is concluded and future directions are presented.

3.
Phys Rev Lett ; 112(2): 023001, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484004

RESUMO

In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

4.
J Nanosci Nanotechnol ; 12(8): 6368-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962750

RESUMO

A facile, reliable, reproducible and ultra-high sensitive aqueous ammonia chemical sensor has been fabricated based on the utilization of La(0.7)Sr(0.3)MnO3 nanoparticles (LSMO NPs), as efficient electron mediators, and reported in this paper. The LSMO NPs were prepared by hydrothermal protocol followed by the annealing process and characterized in detail in terms of their mophological, structural and compositional properties. The I-V technique based aqueous ammonia sensor exhibits an ultra-high sensitivity of 494.68 +/- 0.01 microA cm(-2)mM(-1) and very low-detection limit of 0.2 microM with a response time less than 10 s. To the best of our knowledge, this is the first report in which LSMO is used as an efficient electron mediator for the fabrication of aqueous ammonia chemical sensor. Moreover, by comparing the literature, it is confirmed that the fabricated sensor exhibits highest sensitivity towards the detection of aqueous ammonia. This LSMO nanomaterial based research broadens the range of efficient electron mediators utilized for the fabrication of ultra-high sensitive chemical sensors.

5.
Phys Rev A ; 54(3): 2419-2425, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9913735
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...