Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22181, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092811

RESUMO

Urban activities, particularly vehicle traffic, are contributing significantly to environmental pollution with detrimental effects on public health. The ability to anticipate air quality in advance is critical for public authorities and the general public to plan and manage these activities, which ultimately help in minimizing the adverse impact on the environment and public health effectively. Thanks to recent advancements in Artificial Intelligence and sensor technology, forecasting air quality is possible through the consideration of various environmental factors. This paper presents our novel solution for air quality prediction and its correlation with different environmental factors and urban activities, such as traffic density. To this aim, we propose a multi-modal framework by integrating real-time data from different environmental sensors and traffic density extracted from Closed Circuit Television footage. The framework effectively addresses data inconsistencies arising from sensor and camera malfunctions within a streaming dataset. The dataset exhibits real-world complexities, including abrupt camera or station activations/deactivations, noise interference, and outliers. The proposed system tackles the challenge of predicting air quality at locations having no sensors or experiencing sensor failures by training a joint model on the data obtained from nearby stations/sensors using a Particle Swarm Optimization (PSO)-based merit fusion of the sensor data. The proposed methodology is evaluated using various variants of the LSTM model including Bi-directional LSTM, CNN-LSTM, and Convolutions LSTM (ConvLSTM) obtaining an improvement of 48%, 67%, and 173% for short-term, medium-term, and long-term periods, respectively, over the ARIMA model.

2.
Sci Rep ; 13(1): 16336, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770490

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Early and accurate detection of AD is crucial to plan for disease modifying therapies that could prevent or delay the conversion to sever stages of the disease. As a chronic disease, patient's multivariate time series data including neuroimaging, genetics, cognitive scores, and neuropsychological battery provides a complete profile about patient's status. This data has been used to build machine learning and deep learning (DL) models for the early detection of the disease. However, these models still have limited performance and are not stable enough to be trusted in real medical settings. Literature shows that DL models outperform classical machine learning models, but ensemble learning has proven to achieve better results than standalone models. This study proposes a novel deep stacking framework which combines multiple DL models to accurately predict AD at an early stage. The study uses long short-term memory (LSTM) models as base models over patient's multivariate time series data to learn the deep longitudinal features. Each base LSTM classifier has been optimized using the Bayesian optimizer using different feature sets. As a result, the final optimized ensembled model employed heterogeneous base models that are trained on heterogeneous data. The performance of the resulting ensemble model has been explored using a cohort of 685 patients from the University of Washington's National Alzheimer's Coordinating Center dataset. Compared to the classical machine learning models and base LSTM classifiers, the proposed ensemble model achieves the highest testing results (i.e., 82.02, 82.25, 82.02, and 82.12 for accuracy, precision, recall, and F1-score, respectively). The resulting model enhances the performance of the state-of-the-art literature, and it could be used to build an accurate clinical decision support tool that can assist domain experts for AD progression detection.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Fatores de Tempo , Teorema de Bayes , Disfunção Cognitiva/diagnóstico , Neuroimagem/métodos , Doença de Alzheimer/diagnóstico por imagem , Computadores
3.
Comput Biol Med ; 158: 106848, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044052

RESUMO

There has been an increasing interest in translating artificial intelligence (AI) research into clinically-validated applications to improve the performance, capacity, and efficacy of healthcare services. Despite substantial research worldwide, very few AI-based applications have successfully made it to clinics. Key barriers to the widespread adoption of clinically validated AI applications include non-standardized medical records, limited availability of curated datasets, and stringent legal/ethical requirements to preserve patients' privacy. Therefore, there is a pressing need to improvise new data-sharing methods in the age of AI that preserve patient privacy while developing AI-based healthcare applications. In the literature, significant attention has been devoted to developing privacy-preserving techniques and overcoming the issues hampering AI adoption in an actual clinical environment. To this end, this study summarizes the state-of-the-art approaches for preserving privacy in AI-based healthcare applications. Prominent privacy-preserving techniques such as Federated Learning and Hybrid Techniques are elaborated along with potential privacy attacks, security challenges, and future directions.


Assuntos
Inteligência Artificial , Privacidade , Humanos , Registros Eletrônicos de Saúde , Atenção à Saúde , Disseminação de Informação
4.
Comput Biol Med ; 149: 106043, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115302

RESUMO

With the advent of machine learning (ML) and deep learning (DL) empowered applications for critical applications like healthcare, the questions about liability, trust, and interpretability of their outputs are raising. The black-box nature of various DL models is a roadblock to clinical utilization. Therefore, to gain the trust of clinicians and patients, we need to provide explanations about the decisions of models. With the promise of enhancing the trust and transparency of black-box models, researchers are in the phase of maturing the field of eXplainable ML (XML). In this paper, we provided a comprehensive review of explainable and interpretable ML techniques for various healthcare applications. Along with highlighting security, safety, and robustness challenges that hinder the trustworthiness of ML, we also discussed the ethical issues arising because of the use of ML/DL for healthcare. We also describe how explainable and trustworthy ML can resolve all these ethical problems. Finally, we elaborate on the limitations of existing approaches and highlight various open research problems that require further development.


Assuntos
Instalações de Saúde , Aprendizado de Máquina , Atenção à Saúde , Humanos , Inquéritos e Questionários
5.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632034

RESUMO

The increasing popularity of social networks and users' tendency towards sharing their feelings, expressions, and opinions in text, visual, and audio content have opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in the literature, sentiment analysis from images and videos is relatively new. This article focuses on visual sentiment analysis in a societally important domain, namely disaster analysis in social media. To this aim, we propose a deep visual sentiment analyzer for disaster-related images, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation, and evaluations. For data annotation and analyzing people's sentiments towards natural disasters and associated images in social media, a crowd-sourcing study has been conducted with a large number of participants worldwide. The crowd-sourcing study resulted in a large-scale benchmark dataset with four different sets of annotations, each aiming at a separate task. The presented analysis and the associated dataset, which is made public, will provide a baseline/benchmark for future research in the domain. We believe the proposed system can contribute toward more livable communities by helping different stakeholders, such as news broadcasters, humanitarian organizations, as well as the general public.


Assuntos
Desastres , Mídias Sociais , Coleta de Dados , Humanos , Análise de Sentimentos , Rede Social
6.
IEEE Access ; 10: 31306-31339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35441062

RESUMO

This paper provides a comprehensive literature review of various technologies and protocols used for medical Internet of Things (IoT) with a thorough examination of current enabling technologies, use cases, applications, and challenges. Despite recent advances, medical IoT is still not considered a routine practice. Due to regulation, ethical, and technological challenges of biomedical hardware, the growth of medical IoT is inhibited. Medical IoT continues to advance in terms of biomedical hardware, and monitoring figures like vital signs, temperature, electrical signals, oxygen levels, cancer indicators, glucose levels, and other bodily levels. In the upcoming years, medical IoT is expected replace old healthcare systems. In comparison to other survey papers on this topic, our paper provides a thorough summary of the most relevant protocols and technologies specifically for medical IoT as well as the challenges. Our paper also contains several proposed frameworks and use cases of medical IoT in hospital settings as well as a comprehensive overview of previous architectures of IoT regarding the strengths and weaknesses. We hope to enable researchers of multiple disciplines, developers, and biomedical engineers to quickly become knowledgeable on how various technologies cooperate and how current frameworks can be modified for new use cases, thus inspiring more growth in medical IoT.

7.
JMIR Form Res ; 6(5): e36238, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35389357

RESUMO

BACKGROUND: Contact tracing has been globally adopted in the fight to control the infection rate of COVID-19. To this aim, several mobile apps have been developed. However, there are ever-growing concerns over the working mechanism and performance of these applications. The literature already provides some interesting exploratory studies on the community's response to the applications by analyzing information from different sources, such as news and users' reviews of the applications. However, to the best of our knowledge, there is no existing solution that automatically analyzes users' reviews and extracts the evoked sentiments. We believe such solutions combined with a user-friendly interface can be used as a rapid surveillance tool to monitor how effective an application is and to make immediate changes without going through an intense participatory design method. OBJECTIVE: In this paper, we aim to analyze the efficacy of AI and NLP techniques for automatically extracting and classifying the polarity of users' sentiments by proposing a sentiment analysis framework to automatically analyze users' reviews on COVID-19 contact tracing mobile apps. We also aim to provide a large-scale annotated benchmark data set to facilitate future research in the domain. As a proof of concept, we also developed a web application based on the proposed solutions, which is expected to help the community quickly analyze the potential of an application in the domain. METHODS: We propose a pipeline starting from manual annotation via a crowd-sourcing study and concluding with the development and training of artificial intelligence (AI) models for automatic sentiment analysis of users' reviews. In detail, we collected and annotated a large-scale data set of user reviews on COVID-19 contact tracing applications. We used both classical and deep learning methods for classification experiments. RESULTS: We used 8 different methods on 3 different tasks, achieving up to an average F1 score of 94.8%, indicating the feasibility of the proposed solution. The crowd-sourcing activity resulted in a large-scale benchmark data set composed of 34,534 manually annotated reviews. CONCLUSIONS: The existing literature mostly relies on the manual or exploratory analysis of users' reviews on applications, which is tedious and time-consuming. In existing studies, generally, data from fewer applications are analyzed. In this work, we showed that AI and natural language processing techniques provide good results for analyzing and classifying users' sentiments' polarity and that automatic sentiment analysis can help to analyze users' responses more accurately and quickly. We also provided a large-scale benchmark data set. We believe the presented analysis, data set, and proposed solutions combined with a user-friendly interface can be used as a rapid surveillance tool to analyze and monitor mobile apps deployed in emergency situations leading to rapid changes in the applications without going through an intense participatory design method.

9.
IEEE Rev Biomed Eng ; 14: 156-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32746371

RESUMO

Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from one-dimensional heart signals to computer-aided diagnosis (CADx) using multi-dimensional medical images. Notwithstanding the impressive performance of ML/DL, there are still lingering doubts regarding the robustness of ML/DL in healthcare settings (which is traditionally considered quite challenging due to the myriad security and privacy issues involved), especially in light of recent results that have shown that ML/DL are vulnerable to adversarial attacks. In this paper, we present an overview of various application areas in healthcare that leverage such techniques from security and privacy point of view and present associated challenges. In addition, we present potential methods to ensure secure and privacy-preserving ML for healthcare applications. Finally, we provide insight into the current research challenges and promising directions for future research.


Assuntos
Diagnóstico por Computador , Aprendizado de Máquina , Confidencialidade , Registros Eletrônicos de Saúde , Humanos
10.
Front Big Data ; 3: 587139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33693420

RESUMO

With the advances in machine learning (ML) and deep learning (DL) techniques, and the potency of cloud computing in offering services efficiently and cost-effectively, Machine Learning as a Service (MLaaS) cloud platforms have become popular. In addition, there is increasing adoption of third-party cloud services for outsourcing training of DL models, which requires substantial costly computational resources (e.g., high-performance graphics processing units (GPUs)). Such widespread usage of cloud-hosted ML/DL services opens a wide range of attack surfaces for adversaries to exploit the ML/DL system to achieve malicious goals. In this article, we conduct a systematic evaluation of literature of cloud-hosted ML/DL models along both the important dimensions-attacks and defenses-related to their security. Our systematic review identified a total of 31 related articles out of which 19 focused on attack, six focused on defense, and six focused on both attack and defense. Our evaluation reveals that there is an increasing interest from the research community on the perspective of attacking and defending different attacks on Machine Learning as a Service platforms. In addition, we identify the limitations and pitfalls of the analyzed articles and highlight open research issues that require further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...