Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38699907

RESUMO

Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.


Assuntos
Apoptose , Colite Ulcerativa , Estresse Oxidativo , Triterpenos Pentacíclicos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Animais , Triterpenos Pentacíclicos/farmacologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Wistar
2.
Environ Sci Pollut Res Int ; 30(56): 119016-119033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919499

RESUMO

Acute kidney injury (AKI) is a life-threatening complication that accompanies rhabdomyolysis. Daidzein is a dietary isoflavone that has various biological activities. This study examined the therapeutic potential of daidzein and the underlying mechanisms against AKI induced by glycerol in male rats. Animals were injected once with glycerol (50%, 10 ml/kg, intramuscular) for induction of AKI and pre-treated orally with daidzein (25, 50, and 100 mg/kg) for 2 weeks. Biochemical, histopathological, immunohistopathological, and molecular parameters were assessed to evaluate the effect of daidzein. The results revealed that the model group displayed remarkable functional, molecular, and structural changes in the kidney. However, pre-administration of daidzein markedly decreased the kidney relative weight as well as the levels of urea, creatinine, K, P, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin C. Further, daidzein lessened the rhabdomyolysis-related markers [lactate dehydrogenase (LDH) and creatine kinase (CK)]. Notably, the enhancement of the antioxidant biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) is accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, upregulated gene expression levels of nuclear factor erythroid 2-related factor 2 (Nfe212) and hemeoxygenase-1 (Hmox1) were exerted by daidzein administration. Rats who received daidzein displayed markedly lower interleukin-1ß (IL-1ß), tumor nuclear factor-α (TNF-α), myleoperoxidase (MPO), and nuclear factor kappa B (NF-κB) levels together with higher interleukin-10 (IL-10) related to the model group. Remarkably, significant declines were noticed in the pro-apoptotic (Bax and caspase-3) and rises in antiapoptotic (Bcl-2) levels in the group that received daidzein. The renal histological screening validated the aforementioned biochemical and molecular alterations. Our findings support daidzein as a potential therapeutic approach against AKI-induced renal injury via suppression of muscle degradation, oxidative damage, cytokine release, and apoptosis.


Assuntos
Injúria Renal Aguda , Isoflavonas , Rabdomiólise , Ratos , Masculino , Animais , Glicerol/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Rim , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Estresse Oxidativo , Isoflavonas/farmacologia , Rabdomiólise/induzido quimicamente , Rabdomiólise/complicações , Rabdomiólise/patologia
3.
Environ Sci Pollut Res Int ; 29(8): 12208-12221, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34562213

RESUMO

Monosodium glutamate (MSG), a commonly used flavor enhancer, has been reported to induce hepatic and renal dysfunctions. In this study, the palliative role of protocatechuic acid (PCA) in MSG-administered rats was elucidated. Adult male rats were assigned to four groups, namely control, MSG (4 g/kg), PCA (100 mg/kg), and the last group was co-administered MSG and PCA at aforementioned doses for 7 days. Results showed that MSG augmented the hepatic and renal functions markers as well as glucose, triglycerides, total cholesterol, and low-density lipoprotein levels. Moreover, marked increases in malondialdehyde levels accompanied by declines in glutathione levels and notable decreases in the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were observed in MSG-treated group. The MSG-mediated oxidative stress was further confirmed by downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression levels in both tissues. In addition, MSG enhanced the hepatorenal inflammation as witnessed by increased inflammatory cytokines (interleukin-1b and tumor necrosis factor-α) and elevated nuclear factor-κB (NF-κB) levels. Further, significant increases in Bcl-2-associated X protein (Bax) levels together with decreases in B-cell lymphoma 2 (Bcl-2) levels were observed in MSG administration. Histopathological screening supported the biochemical and molecular findings. In contrast, co-treatment of rats with PCA resulted in remarkable enhancement of the antioxidant cellular capacity, suppression of inflammatory mediators, and apoptosis. These effects are possibly endorsed for activation of Nrf-2 and suppression of NF-kB signaling pathways. Collectively, addition of PCA counteracted MSG-induced hepatorenal injuries through modulation of oxidative, inflammatory and apoptotic alterations.


Assuntos
Fígado , Glutamato de Sódio , Animais , Antioxidantes/metabolismo , Apoptose , Hidroxibenzoatos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo , Ratos , Glutamato de Sódio/metabolismo , Glutamato de Sódio/toxicidade
4.
Int J Nanomedicine ; 15: 6339-6353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922005

RESUMO

INTRODUCTION: Epilepsy is a chronic neurological condition characterized by behavioral, molecular, and neurochemical alterations. Current antiepileptic drugs are associated with various adverse impacts. The main goal of the current study is to investigate the possible anticonvulsant effect of selenium nanoparticles (SeNPs) against pentylenetetrazole (PTZ)-mediated epileptic seizures in mice hippocampus. Sodium valproate (VPA) was used as a standard anti-epileptic drug. METHODS: Mice were assigned into five groups (n=15): control, SeNPs (5 mg/kg, orally), PTZ (60 mg/kg, intraperitoneally), SeNPs+PTZ and VPA (200 mg/kg)+PTZ. All groups were treated for 10 days. RESULTS: PTZ injection triggered a state of oxidative stress in the hippocampal tissue as represented by the elevated lipoperoxidation, heat shock protein 70 level, and nitric oxide formation while decreased glutathione level and antioxidant enzymes activity. Additionally, the blotting analysis showed downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the epileptic mice. A state of neuroinflammation was recorded following the developed seizures represented by the increased pro-inflammatory cytokines. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions. At the neurochemical level, acetylcholinesterase activity and monoamines content were decreased in the epileptic mice, accompanied by high glutamate and low GABA levels in the hippocampal tissue. However, SeNP supplementation was found to delay the onset and decreased the duration of tonic, myoclonic, and generalized seizures following PTZ injection. Moreover, SeNPs were found to provide neuroprotection through preventing the development of oxidative challenge via the upregulation of Nrf2 and HO-1, inhibiting the inflammatory response and apoptotic cascade. Additionally, SeNPs reversed the changes in the activity and levels of neuromodulators following the development of epileptic seizures. CONCLUSION: The obtained results suggest that SeNPs could be used as a promising anticonvulsant drug due to its potent antioxidant, anti-inflammatory, and neuromodulatory activities.


Assuntos
Nanopartículas/química , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Convulsões/tratamento farmacológico , Selênio/uso terapêutico , Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Apoptose/efeitos dos fármacos , Colinérgicos/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Nanopartículas/administração & dosagem , Neurônios/efeitos dos fármacos , Neurotransmissores/metabolismo , Oxirredução , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Selênio/administração & dosagem , Selênio/farmacologia
5.
Saudi J Biol Sci ; 24(7): 1663-1666, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29062263

RESUMO

Malaria is a major health problem that still affects numerous countries. The current study aimed to identify the role of Indigofera oblongifolia leaf extract in regulating mouse spleen macrophages during the progression of Plasmodium chabaudi infection. Three doses of the leaf extract (100, 200, and 300 mg/kg) were administered to mice inoculated with P. chabaudi infected erythrocytes. The weight of the infected mice improved after the treatment with I. oblongifolia. The infection causes disorganization of macrophage distribution in the spleen. After the mice had been treated with the leaf extract, the macrophages appeared to be reorganized in the white and red pulp areas. In addition, the I. oblongifolia leaf extract (IOLE) significantly increased the total antioxidant capacity of the mice spleens infected with P. chabaudi. The phagocytic activity of spleen macrophages was increased in the infected group as indicated by the significant decrease in the number of fluorescent particles in the spleen sections. This number increased in the mice spleens after treatment with IOLE. Based on these results, it is suggested that IOLE regulate macrophage response of the spleen during the blood stage of malaria in mice.

6.
Parasitol Res ; 112(9): 3109-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23749092

RESUMO

Eimeria coecicola causes intestinal coccidiosis in rabbits and, thereby, enormous economic losses in rabbit farms. This study aimed to investigate the effect of intestinal coccidial infection, E. coecicola on metabolic status and growth of rabbits. Animals were allocated into two groups with eight rabbits each; one group was orally inoculated with saline and served as control while the other group was orally inoculated with 5 × 10(4) sporulated oocysts. On day 7 postinfection, fecal expulsion of E. coecicola oocysts is maximal (1.2 × 10(6) oocyst/g feces) and rabbits have lost approximately 23% of their weight. Infection induced a severe depletion in plasma growth hormone level. In addition, the energy metabolic status was significantly (P ≤ 0.05) altered by the infection as, both blood glucose and total lipid levels were significantly elevated with mutual depletion in carbohydrate stores in liver sections. Also, the thyroid-stimulating hormone and cortisol concentrations were raised as a consequence of the infection. Moreover, protein status was affected by the infection as both liver and plasma total proteins were significantly decreased with concurrent disturbance in the blood protein electrophoretic pattern and duplication of blood urea nitrogen concentration. Finally, the infection induced plasma electrolyte imbalance as indicated by a significant decrease in sodium, potassium, calcium, phosphorus, ferrous, and selenium ions. Our data suggested that the intestinal coccidial infection of rabbits with E. coecicola has serious effects on rabbit growth and metabolism and could disrupt endocrine and electrolyte homeostasis.


Assuntos
Coccidiose/veterinária , Eimeria/fisiologia , Enteropatias Parasitárias/veterinária , Coelhos/parasitologia , Animais , Glicemia/metabolismo , Proteínas Sanguíneas/metabolismo , Coccidiose/metabolismo , Coccidiose/parasitologia , Metabolismo Energético , Fezes/parasitologia , Feminino , Hormônio do Crescimento/sangue , Interações Hospedeiro-Parasita , Hidrocortisona/sangue , Enteropatias Parasitárias/metabolismo , Enteropatias Parasitárias/parasitologia , Lipídeos/sangue , Fígado/metabolismo , Nitrogênio/sangue , Coelhos/crescimento & desenvolvimento , Coelhos/metabolismo , Tireotropina/sangue , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...