Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1278157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288102

RESUMO

Background: Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways. Methods: In vitro irradiated adult GBM U-87 MG cells were tested for cell viability and allowed to reach confluence prior to stereotactic implantation into the right striatum of male and female athymic rats. Advanced MRI at 9.4T was carried out weekly starting two weeks after implantation. Daily oral GaM (50mg/kg) or vehicle were provided on tumor confirmation. Longitudinal MRI parameters were processed for enhancing tumor ROIs in OsiriX 8.5.1 (lite) with Imaging Biometrics Software (Imaging Biometrics LLC). Statistical analyses included Cox proportional hazards regression models, Kaplan-Meier survival plots, linear mixed model comparisons, and t-statistic for slopes comparison as indicator of tumor growth rate. Results: In this study we demonstrate non-invasively, using longitudinal MRI surveillance, the potent antineoplastic effects of GaM in a novel rat xenograft model of trGBM, as evidenced by extended suppression of tumor growth (23.56 mm3/week untreated, 5.76 mm3/week treated, P < 0.001), a blunting of tumor perfusion, and a significant survival benefit (median overall survival: 30 days untreated, 56 days treated; P < 0.001). The therapeutic effect was confirmed histologically by the presence of abundant cytotoxic cellular swelling, a significant reduction in proliferation markers (P < 0.01), and vessel normalization characterized by prominent vessel pruning, loss of branching, and uniformity of vessel lumina. Xenograft tumors in the treatment group were further characterized by an absence of an invasive edge and a significant reduction in both, MIB-1% and mitotic index (P < 0.01 each). Transferrin receptor and ferroportin expression in GaM-treated tumors illustrated cellular iron deprivation. Additionally, treatment with GaM decreased the expression of pro-angiogenic markers (von Willebrand Factor and VEGF) and increased the expression of anti-angiogenic markers, such as Angiopoietin-2. Conclusion: Monotherapy with the iron-mimetic GaM profoundly inhibits trGBM growth and significantly extends disease-specific survival in vivo.

2.
Oncotarget ; 11(17): 1531-1544, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32391122

RESUMO

New drugs are needed for glioblastoma, an aggressive brain tumor with a dismal prognosis. We recently reported that gallium maltolate (GaM) retards the growth of glioblastoma in a rat orthotopic brain tumor model by inhibiting mitochondrial function and iron-dependent ribonucleotide reductase (RR). However, GaM's mechanism of action at the mitochondrial level is not known. Given the interaction between gallium and iron metabolism, we hypothesized that gallium might target iron-sulfur (Fe-S) cluster-containing mitochondrial proteins. Using Extracellular Flux Analyzer technology, we confirmed that after a 24-h incubation, GaM 50 µmol/L inhibited glioblastoma cell growth by <10% but inhibited cellular oxygen consumption rate by 44% and abrogated mitochondrial reserve capacity. GaM blocked mitochondrial complex I activity and produced a 2.9-fold increase in cellular ROS. NMR spectroscopy revealed that gallium binds to IscU, the bacterial scaffold protein for Fe-S cluster assembly and stabilizes its folded state. Gallium inhibited the rate of in vitro cluster assembly catalyzed by bacterial cysteine desulfurase in a reaction mixture containing IscU, Fe (II), DTT, and L-cysteine. Metformin, a complex I inhibitor, enhanced GaM's inhibition of complex I, further increased cellular ROS levels, and synergistically enhanced GaM's cytotoxicity in glioblastoma cells in 2-D and 3-D cultures. Metformin did not affect GaM action on cellular iron uptake or transferrin receptor1 expression nor did it enhance the cytotoxicity of the RR inhibitor Didox. Our results show that GaM inhibits complex I by disrupting iron-sulfur cluster assembly and that its cytotoxicity can be synergistically enhanced by metformin through combined action on complex I.

3.
Oncotarget ; 9(75): 34122-34131, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30344926

RESUMO

Pediatric glioblastoma (GBM) is a relatively rare brain tumor in children that has a dismal prognosis. Surgery followed by radiotherapy is the main treatment protocol used for older patients. The benefit of adjuvant chemotherapy is still limited due to a poor understanding of the underlying molecular and genetic changes that occur with irradiation of the tumor. In this study, we performed total RNA sequencing on an established stable radioresistant pediatric GBM cell line to identify mRNA expression changes following radiation. The expression of many genes was altered in the radioresistant pediatric GBM model. These genes have never before been reported to be associated with the development of radioresistant GBM. In addition to exhibiting an accelerated growth rate, radioresistant GBM cells also have overexpression of the DNA synthesis-rate-limiting enzyme ribonucleotide reductase, and pro-cathepsin B. These newly identified genes should be concertedly studied to better understand their role in pediatric GBM recurrence and progression after radiation. It was observed that the changes in multiple biological pathways protected GBM cells against radiation and transformed them to a more malignant form. These changes emphasize the importance of developing a treatment regimen that consists of a multiple-agent cocktail that acts on multiple implicated pathways to effectively target irradiated pediatric GBM. An alternative to radiation or a novel therapy that targets differentially expressed genes, such as metalloproteases, growth factors, and oncogenes and aim to minimize oncogenic changes following radiation is necessary to improve recurrent GBM survival.

4.
Oncotarget ; 9(34): 23532-23542, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29805753

RESUMO

The absence of major progress in the treatment of glioblastoma (GBM) is partly attributable to our poor understanding of both GBM tumor biology and the acquirement of treatment resistance in recurrent GBMs. Recurrent GBMs are characterized by their resistance to radiation. In this study, we used an established stable U87 radioresistant GBM model and total RNA sequencing to shed light on global mRNA expression changes following irradiation. We identified many genes, the expressions of which were altered in our radioresistant GBM model, that have never before been reported to be associated with the development of radioresistant GBM and should be concertedly further investigated to understand their roles in radioresistance. These genes were enriched in various biological processes such as inflammatory response, cell migration, positive regulation of epithelial to mesenchymal transition, angiogenesis, apoptosis, positive regulation of T-cell migration, positive regulation of macrophage chemotaxis, T-cell antigen processing and presentation, and microglial cell activation involved in immune response genes. These findings furnish crucial information for elucidating the molecular mechanisms associated with radioresistance in GBM. Therapeutically, with the global alterations of multiple biological pathways observed in irradiated GBM cells, an effective GBM therapy may require a cocktail carrying multiple agents targeting multiple implicated pathways in order to have a chance at making a substantial impact on improving the overall GBM survival.

5.
Mol Cancer Ther ; 17(6): 1240-1250, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29592883

RESUMO

Gallium, a metal with antineoplastic activity, binds transferrin (Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron homeostasis leading to cell death. We hypothesized that TfR1 on brain microvascular endothelial cells (BMEC) would facilitate Tf-Ga transport into the brain enabling it to target TfR-bearing glioblastoma. We show that U-87 MG and D54 glioblastoma cell lines and multiple glioblastoma stem cell (GSC) lines express TfRs, and that their growth is inhibited by gallium maltolate (GaM) in vitro After 24 hours of incubation with GaM, cells displayed a loss of mitochondrial reserve capacity followed by a dose-dependent decrease in oxygen consumption and a decrease in the activity of the iron-dependent M2 subunit of ribonucleotide reductase (RRM2). IHC staining of rat and human tumor-bearing brains showed that glioblastoma, but not normal glial cells, expressed TfR1 and RRM2, and that glioblastoma expressed greater levels of H- and L-ferritin than normal brain. In an orthotopic U-87 MG glioblastoma xenograft rat model, GaM retarded the growth of brain tumors relative to untreated control (P = 0.0159) and reduced tumor mitotic figures (P = 0.045). Tumors in GaM-treated animals displayed an upregulation of TfR1 expression relative to control animals, thus indicating that gallium produced tumor iron deprivation. GaM also inhibited iron uptake and upregulated TfR1 expression in U-87 MG and D54 cells in vitro We conclude that GaM enters the brain via TfR1 on BMECs and targets iron metabolism in glioblastoma in vivo, thus inhibiting tumor growth. Further development of novel gallium compounds for brain tumor treatment is warranted. Mol Cancer Ther; 17(6); 1240-50. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Glioblastoma/metabolismo , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organometálicos/farmacologia , Pironas/farmacologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Animais , Antineoplásicos/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/patologia , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Compostos Organometálicos/química , Pironas/química , Ratos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores
6.
J Neurooncol ; 136(1): 13-21, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28900832

RESUMO

The goal of this study is to spatially discriminate tumor from treatment effect (TE), within the contrast-enhancing lesion, for brain tumor patients at all stages of treatment. To this end, the diagnostic accuracy of MRI-derived diffusion and perfusion parameters to distinguish pure TE from pure glioblastoma (GBM) was determined utilizing spatially-correlated biopsy samples. From July 2010 through June 2015, brain tumor patients who underwent pre-operative DWI and DSC-MRI and stereotactic image-guided biopsy were considered for inclusion in this IRB-approved study. MRI-derived parameter maps included apparent diffusion coefficient (ADC), normalized cerebral blood flow (nCBF), normalized and standardized relative cerebral blood volume (nRCBV, sRCBV), peak signal-height (PSR) and percent signal-recovery (PSR). These were co-registered to the Stealth MRI and median values extracted from the spatially-matched biopsy regions. A ROC analysis accounting for multiple subject samples was performed, and the optimal threshold for distinguishing TE from GBM determined for each parameter. Histopathologic diagnosis of pure TE (n = 10) or pure GBM (n = 34) was confirmed in tissue samples from 15 consecutive subjects with analyzable data. Perfusion thresholds of sRCBV (3575; SN/SP% = 79.4/90.0), nRCBV (1.13; SN/SP% = 82.1/90.0), and nCBF (1.05; SN/SP% = 79.4/80.0) distinguished TE from GBM (P < 0.05), whereas ADC, PSR, and PH could not (P > 0.05). The thresholds for CBF and CBV can be applied to lesions with any admixture of tumor or treatment effect, enabling the identification of true tumor burden within enhancing lesions. This approach overcomes current limitations of averaging values from both tumor and TE for quantitative assessments.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Glioblastoma/diagnóstico por imagem , Lesões por Radiação/diagnóstico por imagem , Adulto , Idoso , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Meios de Contraste , Feminino , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Aumento da Imagem , Masculino , Pessoa de Meia-Idade , Lesões por Radiação/patologia , Sensibilidade e Especificidade
7.
Oncol Rep ; 38(4): 1932-1940, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28765947

RESUMO

Glioblastoma multiforme (GBM) is the most common primary, intracranial malignancy of the central nervous system. The standard treatment protocol, which involves surgical resection, and concurrent radiation with adjuvant temozolomide (TMZ), still imparts a grim prognosis. Ultimately, all GBMs exhibit recurrence or progression, developing resistance to standard treatment. This study demonstrates that GBMs acquire resistance to radiation via upregulation of acid ceramidase (ASAH1) and sphingosine­1-phosphate (Sph-1P). Moreover, inhibition of ASAH1 and Sph-1P, either with humanized monoclonal antibodies, small molecule drugs (i.e. carmofur), or a combination of both, led to suppression of GBM cell growth. These results suggest that ASAH1 and Sph-1P may be excellent targets for the treatment of new GBMs and recurrent GBMs, especially since the latter overexpresses ASAH1.


Assuntos
Ceramidase Ácida/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/radioterapia , Glioblastoma/enzimologia , Glioblastoma/radioterapia , Ceramidase Ácida/biossíntese , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Lisofosfolipídeos/metabolismo , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/patologia , Tolerância a Radiação , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Regulação para Cima
8.
Oncotarget ; 8(15): 24753-24761, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445970

RESUMO

Pediatric brain tumors are the most common solid tumors in children and are also a leading culprit of cancer-related fatalities in children. Pediatric brain tumors remain hard to treat. In this study, we demonstrated that medulloblastoma, pediatric glioblastoma, and atypical teratoid rhabdoid tumors express significant levels of acid ceramidase, where levels are highest in the radioresistant tumors, suggesting that acid ceramidase may confer radioresistance. More importantly, we also showed that acid ceramidase inhibitors are highly effective at targeting these pediatric brain tumors with low IC50 values (4.6-50 µM). This data suggests acid ceramidase as a novel drug target for adjuvant pediatric brain tumor therapies. Of these acid ceramidase inhibitors, carmofur has seen clinical use in Japan since 1981 for colorectal cancers and is a promising drug to undergo further animal studies and subsequently a clinical trial as a treatment for pediatric patients with brain tumors.


Assuntos
Ceramidase Ácida/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Ceramidase Ácida/farmacologia , Animais , Neoplasias Encefálicas/patologia , Criança , Humanos , Camundongos
9.
Oncotarget ; 8(68): 112662-112674, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348854

RESUMO

Glioblastoma remains the most common, malignant primary cancer of the central nervous system with a low life expectancy and an overall survival of less than 1.5 years. The treatment options are limited and there is no cure. Moreover, almost all patients develop recurrent tumors, which typically are more aggressive. Therapeutically resistant glioblastoma or glioblastoma stem-like cells (GSCs) are hypothesized to cause this inevitable recurrence. Identifying prognostic biomarkers of glioblastoma will potentially advance knowledge about glioblastoma tumorigenesis and enable discovery of more effective therapies. Proteomic analysis of more than 600 glioblastoma-specific proteins revealed, for the first time, that expression of acid ceramidase (ASAH1) is associated with poor glioblastoma survival. CD133+ GSCs express significantly higher ASAH1 compared to CD133- GSCs and serum-cultured glioblastoma cell lines, such as U87MG. These findings implicate ASAH1 as a plausible independent prognostic marker, providing a target for a therapy tailored toward GSCs. We further demonstrate that ASAH1 inhibition increases cellular ceramide level and induces apoptosis. Strikingly, U87MG cells, and three different patient-derived glioblastoma stem-like cancer cell lines were efficiently killed, through apoptosis, by three different known ASAH1 inhibitors with IC50's ranging from 11-104 µM. In comparison, the standard glioblastoma chemotherapy agent, temozolomide, had minimal GSC-targeted effects at comparable or even higher concentrations (IC50 > 750 µM against GSCs). ASAH1 is identified as a de novo glioblastoma drug target, and ASAH1 inhibitors, such as carmofur, are shown to be highly effective and to specifically target glioblastoma GSCs. Carmofur is an ASAH1 inhibitor that crosses the blood-brain barrier, a major bottleneck in glioblastoma treatment. It has been approved in Japan since 1981 for colorectal cancer therapy. Therefore, it is poised for repurposing and translation to glioblastoma clinical trials.

10.
Vet Anaesth Analg ; 31(3): 164-74, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15268687

RESUMO

OBJECTIVE: To compare carprofen to butorphanol, with regard to postsurgical analgesic effects, duration of analgesia, and adverse side effects. STUDY DESIGN: Blinded, randomized clinical study. ANIMALS: Seventy-one cats, 0.5-5 years of age, weighing 3.24 +/- 0.61 kg, undergoing ovariohysterectomy (OHE). METHODS: Cats were premedicated with subcutaneous atropine (0.04 mg kg(-1)), acepromazine (0.02 mg kg(-1)), and ketamine (5 mg kg(-1)). Anesthesia was induced with ketamine (5 mg kg(-1)) and diazepam (0.25 mg kg(-1)) given intravenously, and maintained with isoflurane. There were three treatment groups: group C (4 mg kg(-1) carprofen SC at induction), group B (0.4 mg kg(-1) butorphanol SC at end of surgery), and group S (0.08 mL kg(-1) of sterile saline SC at induction and end of surgery). Behavioral data were collected using a composite pain scale (CPS), prior to surgery (baseline) and 1, 2, 3, 4, 8, 12, 16, 20, and 24 hours post-surgery. Interaction scores were analyzed separately. Cats with CPS scores >12 received rescue analgesia (meperidine, 4 mg kg(-1), intramuscular). RESULTS: Sixty cats completed the study. The CPS scores did not differ significantly between groups C and B at any time period. CPS scores for groups B and C were significantly increased for 12 hours post-surgery, and in group S for 20 hours. Both group C and B CPS scores were significantly lower than group S in this 20-hour postoperative period, except at 4 hours (B and C) and at 3 and 8 hours (B alone). Interaction scores for group C returned to preoperative baseline 4 hours after surgery, while both groups B and S remained increased for at least 24 hours post-surgery. Nine cats required meperidine. CONCLUSION: In this study, carprofen provided better postsurgical analgesia than butorphanol. Clinical relevance Neither drug completely abolished pain, however preoperative carprofen provided better pain control compared with postoperative butorphanol in the 24-hour period following OHE surgery in cats.


Assuntos
Analgésicos Opioides/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Butorfanol/administração & dosagem , Carbazóis/administração & dosagem , Gatos/fisiologia , Dor Pós-Operatória/veterinária , Animais , Gatos/cirurgia , Método Duplo-Cego , Esquema de Medicação , Feminino , Histerectomia/veterinária , Injeções/veterinária , Medição da Dor/veterinária , Dor Pós-Operatória/prevenção & controle , Cuidados Pós-Operatórios/veterinária , Cuidados Pré-Operatórios/veterinária , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...