Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014072

RESUMO

The global aquaculture industry has grown substantially, with consequences for coastal ecology and biogeochemistry. Oyster aquaculture can alter the availability of resources for microbes that live in sediments as oysters move large quantities of organic material to the sediments via filter feeding, possibly leading to changes in the structure and function of sediment microbial communities. Here, we use a chronosequence approach to investigate the impacts of oyster farming on sediment microbial communities over 7 years of aquaculture activity in a temperate coastal system. We detected shifts in bacterial composition (16S rRNA amplicon sequencing), changes in gene expression (meta-transcriptomics), and variations in sediment elemental concentrations (sediment geochemistry) across different durations of oyster farming. Our results indicate that both the structure and function of bacterial communities vary between control (no oysters) and farm sites, with an overall increase in diversity and a shift towards anoxic tolerance in farm sites. However, little to no variation was observed in either structure or function with respect to farming duration suggesting these sediment microbial communities are resilient to change. We also did not find any significant impact of farming on heavy metal accumulation in the sediments. The minimal influence of long-term oyster farming on sediment bacterial function and biogeochemical processes as observed here can bear important consequences for establishing best practices for sustainable farming in these areas. Importance: Sediment microbial communities drive a range of important ecosystem processes such as nutrient recycling and filtration. Oysters are well-known ecological engineers, and their presence is increasing as aquaculture expands in coastal waters globally. Determining how oyster aquaculture impacts sediment microbial processes is key to understanding current and future estuarine biogeochemical processes. Here, we use a multi-omics approach to study the effect of different durations of oyster farming on the structure and function of bacteria and elemental accumulation in the farm sediments. Our results indicate an increase in the diversity of bacterial communities in the farm sites with no such increases observed for elemental concentrations. Further, these effects persist across multiple years of farming with an increase of anoxic tolerant bacteria at farm sites. The multi-omics approach used in this study can serve as a valuable tool to facilitate understanding of the environmental impacts of oyster aquaculture.

3.
Glob Chang Biol ; 26(5): 2988-3005, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068924

RESUMO

Vegetated coastal ecosystems (VCEs; i.e., mangroves, salt marshes, and seagrasses) play a critical role in global carbon (C) cycling, storing 10× more C than temperate forests. Methane (CH4 ), a potent greenhouse gas, can form in the sediments of these ecosystems. Currently, CH4 emissions are a missing component of VCE C budgets. This review summarizes 97 studies describing CH4 fluxes from mangrove, salt marsh, and seagrass ecosystems and discusses factors controlling CH4 flux in these systems. CH4 fluxes from these ecosystems were highly variable yet they all act as net methane sources (median, range; mangrove: 279.17, -67.33 to 72,867.83; salt marsh: 224.44, -92.60 to 94,129.68; seagrass: 64.80, 1.25-401.50 µmol CH4 m-2 day-1 ). Together CH4 emissions from mangrove, salt marsh, and seagrass ecosystems are about 0.33-0.39 Tmol CH4 -C/year-an addition that increases the current global marine CH4 budget by more than 60%. The majority (~45%) of this increase is driven by mangrove CH4 fluxes. While organic matter content and quality were commonly reported in individual studies as the most important environmental factors driving CH4 flux, they were not significant predictors of CH4 flux when data were combined across studies. Salinity was negatively correlated with CH4 emissions from salt marshes, but not seagrasses and mangroves. Thus the available data suggest that other environmental drivers are important for predicting CH4 emissions in vegetated coastal systems. Finally, we examine stressor effects on CH4 emissions from VCEs and we hypothesize that future changes in temperature and other anthropogenic activites (e.g., nitrogen loading) will likely increase CH4 emissions from these ecosystems. Overall, this review highlights the current and growing importance of VCEs in the global marine CH4 budget.


Assuntos
Ecossistema , Metano , Carbono , Florestas , Áreas Alagadas
4.
Nat Commun ; 10(1): 4618, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601794

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Environ Sci Technol ; 53(15): 9118-9127, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31295406

RESUMO

Production of animal protein is associated with high greenhouse gas (GHG) emissions. Globally, oyster aquaculture is increasing as a way to meet growing demands for protein, yet its associated GHG-emissions are largely unknown. We quantified oyster aquaculture GHG-emissions from the three main constituents of GHG-release associated with terrestrial livestock production: fermentation in the animal gut, manure management, and fodder production. We found that oysters release no methane (CH4) and only negligible amounts of nitrous oxide (0.00012 ± 0.00004 µmol N2O gDW-1 hr-1) and carbon dioxide (3.556 ± 0.471 µmol CO2 gDW-1 hr-1). Further, sediment fluxes of N2O and CH4 were unchanged in the presence of oyster aquaculture, regardless of the length of time it had been in place. Sediment CO2 release was slightly stimulated between 4 and 6 years of aquaculture presence and then returned to baseline levels but was not significantly different between aquaculture and a control site when all ages of culture were pooled. There is no GHG-release from oyster fodder production. Considering the main drivers of GHG-release in terrestrial livestock systems, oyster aquaculture has less than 0.5% of the GHG-cost of beef, small ruminants, pork, and poultry in terms of CO2-equivalents per kg protein, suggesting that shellfish aquaculture may provide a a low GHG alternative for future animal protein production compared to land based sources. We estimate that if 10% of the protein from beef consumption in the United States was replaced with protein from oysters, the GHG savings would be equivalent to 10.8 million fewer cars on the road.


Assuntos
Gases de Efeito Estufa , Ostreidae , Animais , Aquicultura , Dióxido de Carbono , Bovinos , Efeito Estufa , Óxido Nitroso
6.
Nat Commun ; 9(1): 1206, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572474

RESUMO

Microorganisms oxidize organic nitrogen to nitrate in a series of steps. Nitrite, an intermediate product, accumulates at the base of the sunlit layer in the subtropical ocean, forming a primary nitrite maximum, but can accumulate throughout the sunlit layer at higher latitudes. We model nitrifying chemoautotrophs in a marine ecosystem and demonstrate that microbial community interactions can explain the nitrite distributions. Our theoretical framework proposes that nitrite can accumulate to a higher concentration than ammonium because of differences in underlying redox chemistry and cell size between ammonia- and nitrite-oxidizing chemoautotrophs. Using ocean circulation models, we demonstrate that nitrifying microorganisms are excluded in the sunlit layer when phytoplankton are nitrogen-limited, but thrive at depth when phytoplankton become light-limited, resulting in nitrite accumulation there. However, nitrifying microorganisms may coexist in the sunlit layer when phytoplankton are iron- or light-limited (often in higher latitudes). These results improve understanding of the controls on nitrification, and provide a framework for representing chemoautotrophs and their biogeochemical effects in ocean models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...