Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Channels (Austin) ; 2(3): 159-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836292

RESUMO

N-methyl-D-aspartate (NMDA) receptors play crucial roles in excitatory synaptic transmission as well as in excitotoxicity. A growing body of evidence suggests that the regulation of both subunit composition and the number of NMDA receptors reaching the surface membrane are tightly regulated. Recently, we have shown that the third membrane domains (M3) of both NR1 and NR2B subunits contain endoplasmic reticulum (ER) retention signals that prevent the unassembled subunits from leaving the ER. Furthermore, these membrane domains together with NR1 M4 are necessary for negating the ER retention signals found in M3 of NR1 and NR2B. In this addendum, we present new electrophysiological data showing that mutation of the HLFY motif, located immediately after M4 of the NR2B subunit, abolishes the surface trafficking of full-length NR1/NR2B complexes (supporting previous immunofluorescent experiments from our lab); however, the deletion of the NR2B C-terminus including the HLFY motif did not affect the formation of functional receptors when two pieces of the NR2B subunit, NR2B truncated before M4 and NR2B M4, were co-expressed together with the NR1 subunit. These observations will help to uncover the processes involved in the assembly of NR1 and NR2 subunits into functional NMDA receptors.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Peptídeos/química , Estrutura Terciária de Proteína , Receptores de N-Metil-D-Aspartato/fisiologia
2.
J Neurosci ; 27(31): 8334-43, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17670980

RESUMO

Subunit composition of NMDA receptors (NMDARs) determines a range of physiological properties, downstream signaling effects, and binding partners. Differential localization of NR2A- or NR2B-containing NMDARs within the neuron and subunit-specific protein associations may explain differences in NR2A and NR2B contributions to synaptic plasticity and excitotoxic cell death. This question is complicated by the existence of tri-heteromeric complexes (NR1/NR2A/NR2B). To date, no quantitative biochemical determinations have been made of the relative abundance of different NMDAR populations in intact hippocampus, the region extensively correlated with NMDAR-dependent long-term potentiation. We investigated subunit composition and subunit-specific interactions in CA1/CA2 of rat hippocampus. Using sequential immunoprecipitations to deplete either NR2B or NR2A, di-heteromeric NR1/NR2A and NR1/NR2B receptor populations were isolated from postnatal day 7 (P7) hippocampus and P42 and 6-month-old CA1/CA2. Quantitative Western blot analysis revealed that 60-70% of NR2A and 70-85% of NR2B subunits were associated in NR1/NR2A or NR1/NR2B di-heteromeric complexes. Isolated di-heteromeric receptor fractions were used to examine NR2A- or NR2B-specific interactions with synapse-associated proteins. Our results indicate that NR2A- or NR2B-containing NMDARs associate similarly with postsynaptic density-95 (PSD-95), synapse-associated protein 102, and PSD-93 at P42. However, NR2A-containing receptors coimmunoprecipitated a greater proportion of the synaptic proteins neuronal nitric oxide synthase, Homer, and beta-catenin. Finally, mass spectrometry analysis of isolated di-heteromeric receptors identified a novel NMDAR interactor, collapsin response mediator protein 2, which preferentially associates with NR2B-containing di-heteromeric NMDARs. In summary, in rat hippocampus, NR2A and NR2B exist primarily in di-heteromeric complexes that interact similarly with PSD-95-related proteins but are associated with different protein complexes.


Assuntos
Hipocampo/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Animais Recém-Nascidos , Dimerização , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
3.
Mol Pharmacol ; 62(5): 1119-27, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12391275

RESUMO

The NR3A subunit of the N-methyl-D-aspartate receptor has been shown to form glutamatergic receptor complexes with NR1 and NR2 subunits and excitatory glycinergic receptor complexes with NR1 alone. We developed an antibody to NR3A and, using quantitative immunoblotting techniques, determined the degree of association between the NR3A subunit and the NR1 and NR2 subunits as well as changes in these associations during development. NR3A expression peaks between postnatal days 7 and 10 in the cortex, midbrain, and hippocampus and reaches higher maximal expression levels in these areas than in the olfactory bulb and cerebellum. Immunoprecipitation experiments with an anti-NR1 antibody demonstrated that the majority of NR3A is associated with NR1 in postnatal day 10 rat cortex (80 +/- 8%), decreasing by half (38 +/- 4%) in the adult rat cortex. Using the anti-NR3A antibody in immunoprecipitation studies, we find that 9.7 +/- 0.8% of NR1, 8.7 +/- 1.8% of NR2A, and 5.0 +/- 0.6% of NR2B are associated with NR3A at postnatal day 10. These values decrease by about half in adult rat cortex. The results of this study demonstrate that NR3A is expressed, distributed, and associated with other subunits in a manner that supports its role in synaptic transmission throughout the rat brain, perhaps playing different roles during development.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Anticorpos/imunologia , Células Cultivadas , Humanos , Immunoblotting , Fragmentos de Peptídeos/imunologia , Testes de Precipitina , Subunidades Proteicas , Coelhos , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...