Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 184: 105099, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715038

RESUMO

Glyphosate is the most sprayed pesticide across the globe. Its toxicity to non-target marine organisms has recently piqued the scientific community's interest. Therefore, the purpose of this study is to investigate the potentially toxic effects of glyphosate on scallops, an ecologically and economically important bivalve group. To do that, specimens of the smooth scallop Flexopecten glaber were exposed to different concentrations (10, 100, and 1000 µg L-1) of the technical-grade glyphosate acid (GLY) for 96 h. The detrimental effects of this pollutant were assayed at cellular and tissular levels. The obtained results showed that the GLY was able to induce oxidative stress in the gills and the digestive gland of F. glaber as revealed by the enhanced hydrogen peroxide (H2O2), protein carbonyls (PCO), malondialdehyde (MDA), and lipid peroxides (LOOH) levels and the altered antioxidant defense system (the glutathione GSH content and the superoxide dismutase (SOD) activity). Additionally, GLY was found to alter the fatty acid profile, to exert a neurotoxic effect through the inhibition of the acetylcholinesterase (AChE) activity, and to provoke several histopathological damages in the two organs studied. The obtained results revealed that the pure form of GLY may exert toxic effects on F. glaber even at relatively low concentrations.


Assuntos
Pectinidae , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Glicina/análogos & derivados , Peróxido de Hidrogênio , Lipídeos , Estresse Oxidativo , Pectinidae/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Glifosato
2.
Membranes (Basel) ; 12(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207145

RESUMO

Water scarcity has become one of the most significant problems globally. Membrane technology has gained considerable attention in water treatment technologies. Polymeric nanocomposite membranes are based on several properties, with enhanced water flux, high hydrophilicity and anti-biofouling behavior, improving the membrane performance, flexibility, cost-effectiveness and excellent separation properties. In this study, aminated graphene oxide (NH2-GO)-based PVDF membranes were fabricated using a phase-inversion method for textile dye removal. These fabricated membranes showed the highest water flux at about 170.2 (J/L.h-1.m-2) and 98.2% BSA rejection. Moreover, these membranes removed about 96.6% and 88.5% of methylene blue and methyl orange, respectively. Aminated graphene oxide-based polyvinylidene fluoride (PVDF) membranes emerge as a good membrane material that enhances the membrane performance.

3.
Biology (Basel) ; 11(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053113

RESUMO

Phosphorus (P) is an essential macronutrient necessary for plant growth, development, and reproduction. Two field experiments were carried out in 2018/2019 and 2019/2020 on P-deficient soil to evaluate the impact of foliar fertilization with nanophosphorus (nP) on growth, yield, and physio-biochemical indices, as well as trigonelline content of fenugreek plants under deficient irrigation (dI) stress (a deficit of 20 and 40% of crop evapotranspiration; dI-20 and dI-40). The growth and yield traits, leaf integrity (relative water content and membrane stability index), photosynthetic pigment contents, leaf and seed P contents, and stem and leaf anatomical features significantly decreased under dI-20, with greater reductions recorded under dI-40. In contrast, water-use efficiency, osmoprotective compounds, including free amino acids, soluble sugars, proline, and trigonelline, along with antioxidant contents (ascorbate, glutathione, phenolics, and flavonoids) and their activity increased significantly under both dI-20 and dI-40. However, foliar feeding with nano-P considerably increased plant growth and yield traits, leaf integrity, photosynthetic pigments contents, leaf and seed P contents, and anatomical features. Besides, water-use efficiency, osmoprotectant contents, and antioxidant content and activity were further increased under both dI-20 and dI-40. The positive effects were more pronounced with the smaller nP (25 nm) than the larger nP (50 nm). The results of this study backed up the idea of using foliar nourishment with nP, which can be effective in modulating fenugreek plant growth and seed production.

4.
Animals (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34944186

RESUMO

This trial was performed to determine the effect of rice bran oil (RBO) inclusion in diets of broiler chickens on performance, carcass characteristics, blood parameters, meat quality, antioxidant activity, liver lipid content, and liver histological structure. The 35-day feeding trial was conducted on 240 one-day-old Ross 308 broiler chickens, allocated to four treatment groups with six replicates each. RBO was examined at different inclusion levels, 0% (control), 1% (RBO1%), 1.5% (RBO1.5%), and 2% (RBO2%) in a completely randomized design. The results showed that at the end of the trial (35 days) the RBO supplementation had positive effects (p < 0.001) on the productivity parameters, but the feed intake was linearly decreased due to RBO inclusion. In addition, RBO supplementation linearly improved (p < 0.05) the dressing percentage, breast yield, immune organs relative weights, and meat glutathione concentration, while it decreased (p < 0.01) the abdominal fat yield and meat crude fat, triglycerides, cholesterol, and Malondialdehyde (MDA) contents in broiler's meat. Moreover, serum total protein, globulin, and high-density lipoprotein contents improved noticeably (p < 0.01) due to offering an RBO-supplemented diet, but serum total lipids, total cholesterol, triglyceride, low-density lipoprotein, and aspartate aminotransferase concentrations linearly reduced (p < 0.01). The RBO supplementation augmented (p < 0.05) the phagocytic index, phagocytic activity, and antibody titer compared to control. On the other hand, RBO inclusion had no effect on the breast, thigh, or abdominal fat color parameters. Moreover, RBO supplementation reduced (p < 0.01) the content of total saturated FA (SFA), but increased (p < 0.01) the content of total monounsaturated FA (MUFA), and polyunsaturated FA in both breast and thigh meat. Chemical analysis of the liver tissue samples revealed that the inclusion of RBO linearly reduced (p < 0.05) hepatic cholesterol, triglyceride, and MDA contents. Histologically, the lipid percentage and number of lipid droplets (p < 0.01) were markedly lessened in the RBO-supplemented groups. The histological structure of the liver asses by light and electron microscope were normal in all groups without any pathological lesions. It is concluded that RBO could be used as a valuable ingredient in broiler chickens' diets to stimulate the growing performance and immune status, enhance the antioxidant activity and blood lipid profile, augment liver function, and improve the nutritive value of the meat.

5.
Saudi J Biol Sci ; 28(12): 7581-7587, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867062

RESUMO

Micropropagation protocol of Oriental Hybrid Lilium cv. Ravenna was developed using bulb scale segments (Basal and Tip) as explants. Surface sterilization of healthy bulb scales with carbendazim 200 ppm for 30 min, then 0.1 percent mercuric chloride for 10 min, then 70% ethyl alcohol for 30 s was superior to all other treatments in recording highest culture asepsis (77.08%) and higher explant survival (86.12%). Explant survival was higher in basal segments (88.54%) compared to tip segments (85.52%). Highest culture establishment was recorded in basal scale segments (68.26%) followed by tip scale segments (55.21%). MS medium augmented with 0.50 mgl-1 Naphthalene acetic acid and 2.0 mgl-1. 6-Benzylamino Purine recorded maximum culture establishment (76.17%), highest bulblet number/explant (5.52) with maximum length of shoots (2.20 cm) and number of leaves (3.39). This treatment combination of growth regulators resulted in highest shoot proliferation (83.33%) along with maximum shoot number (2.41explant-1), shoot length (2.35 cm) and leaf number (5.44) of micro shoots during proliferation stage. Rooting of explants was superior with Indole-3-butyric acid compared to Naphthalene acetic acid. Highest rooting of 92.71% along with maximum number of primary roots shoot-1 (12.06), maximum primary root length (3.17 cm) was documented in Murashige and Skoog medium added with Indole-3-butyric acid 1.50 mgl-1 with best ex vitro survival rate (98.96%) of rooted plantlets during primary hardening in perlite + vermiculite (1:1) mixture.

6.
Saudi J Biol Sci ; 28(12): 7595-7606, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867064

RESUMO

Microalgae biomass is considered an important feedstock for biofuels and other bioactive compounds due to its faster growth rate, high biomass production and high biomolecules accumulation over first and second-generation feedstock. This research aimed to maximize the specific growth rate of fresh water green microalgae Closteriopsis acicularis, a member of family Chlorellaceae under the effect of pH and phosphate concentration to attain enhanced biomass productivity. This study investigates the individual and cumulative effect of phosphate concentration and pH on specific growth characteristics of Closteriopsis acicularis in autotrophic mode of cultivation for bioethanol production. Central-Composite Design (CCD) strategy and Response Surface Methodology (RSM) was used for the optimization of microalga growth and ethanol production under laboratory conditions. The results showed that high specific growth rate and biomass productivity of 0.342 day-1 and 0.497 g L-1 day-1 respectively, were achieved at high concentration of phosphate (0.115 g L-1) and pH (9) at 21st day of cultivation. The elemental composition of optimized biomass has shown enhanced elemental accumulation of certain macro (C, O, P) and micronutrients (Na, Mg, Al, K, Ca and Fe) except for nitrogen and sulfur. The Fourier transform infrared spectroscopic analysis has revealed spectral peaks and high absorbance in spectral range of carbohydrates, lipids and proteins, in optimized biomass. The carbohydrates content of optimized biomass was observed as 58%, with 29.3 g L-1 of fermentable sugars after acid catalyzed saccharification. The bioethanol yield was estimated as 51 % g ethanol/g glucose with maximum of 14.9 g/L of bioethanol production. In conclusion, it can be inferred that high specific growth rate and biomass productivity can be achieved by varying levels of phosphate concentration and pH during cultivation of Closteriopsis acicularis for improved yield of microbial growth, biomass and bioethanol production.

7.
PLoS One ; 16(11): e0254906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843496

RESUMO

Now-a-days, plant-based extracts, as a cheap source of growth activators, are being widely used to treat plants grown under extreme climatic conditions. So, a trial was conducted to assess the response of two maize (Zea mays L.) varieties, Sadaf (drought tolerant) and Sultan (drought sensitive) to foliar-applied sugar beet extract (SBE) under varying water-deficit conditions. Different SBE (control, 1%, 2%, 3% & 4%) levels were used in this study, and plants were exposed to water-deficit [(75% and 60% of field capacity (FC)] and control (100% FC) conditions. It was observed that root and shoot dry weights (growth), total soluble proteins, RWC-relative water contents, total phenolics, chlorophyll pigments and leaf area per plant decreased under different water stress regimes. While, proline, malondialdehyde (MDA), RMP-relative membrane permeability, H2O2-hydrogen peroxide and the activities of antioxidant enzymes [CAT-catalase, POD-peroxidase and SOD-superoxide dismutase] were found to be improved in water stress affected maize plants. Exogenous application of varying levels of SBE ameliorated the negative effects of water-deficit stress by enhancing the growth attributes, photosynthetic pigments, RWC, proline, glycinebetaine (GB), activities of POD and CAT enzymes and levels of total phenolics, whereas it reduced the lipid peroxidation in both maize varieties under varying water stress levels. It was noted that 3% and 4% levels of SBE were more effective than the other levels used in enhancing the growth as well as other characteristics of the maize varieties. Overall, the sugar beet extract proved to be beneficial for improving growth and metabolism of maize plants exposed to water stress.


Assuntos
Beta vulgaris , Betaína , Desidratação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Secas , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Zea mays/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-34831744

RESUMO

In this study, marine sediment (MS) was successfully used as a source of methanogenic bacteria for the anaerobic digestion (AD) of chicken manure (CM). Using MS showed high production in liquid and semi-solid conditions. Even in solid conditions, 169.3 mL/g volatile solids of chicken manure (VS-CM) was produced, despite the accumulation of ammonia (4.2 g NH3-N/kg CM). To the best of our knowledge, this is the highest methane production from CM alone, without pretreatment, in solid conditions (20%). Comparing MS to Ozouh sludge (excess activated sewage sludge) (OS), using OS under semi-solid conditions resulted in higher methane production, while using MS resulted in more ammonia tolerance (301 mL/gVS-CM at 8.58 g NH3-N/kg). Production optimization was carried out via a response surface methodology (RDM) model involving four independent variables (inoculum ratio, total solid content, NaCl concentration, and incubation time). Optimized methane production (324.36 mL/gVS-CM) was at a CM:MS ratio of 1:2.5 with no NaCl supplementation, 10% total solid content, and an incubation time of 45 days.


Assuntos
Galinhas , Esterco , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Fermentação , Sedimentos Geológicos , Metano
9.
PLoS One ; 16(11): e0251389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793480

RESUMO

Glycinebetaine (GB) is an osmoprotectant found in plants under environmental stresses that incorporates drought and is associated with drought tolerance in several plants, such as the woody pear. However, how GB improves drought tolerance in pears remains unclear. In the current study, we explored the mechanism by which GB enhances drought tolerance of whole pear plants (Pyrus bretschneideri Redh. cv. Suli) supplied with exogenous GB. The results showed that on the sixth day after withholding water, levels of O2·-, H2O2, malonaldehyde (MDA) and electrolyte leakage in the leaves were substantially increased by 143%, 38%, 134% and 155%, respectively. Exogenous GB treatment was substantially reduced O2·-, H2O2, MDA and electrolyte leakage (38%, 24%, 38% and 36%, respectively) in drought-stressed leaves. Furthermore, exogenous GB induced considerably higher antioxidant enzyme activity in dry-stressed leaves than drought-stressed treatment alone on the sixth day after withholding water, such as superoxide dismutase (SOD) (201%) and peroxidase (POD) (127%). In addition, these GB-induced phenomena led to increased endogenous GB levels in the leaves of the GB 100 + drought and GB 500 + drought treatment groups by 30% and 78%, respectively, compared to drought treatment alone. The findings obtained were confirmed by the results of the disconnected leaf tests, in which GB contributed to a substantial increase in SOD activity and parallel dose- and time-based decreases in MDA levels. These results demonstrate that GB-conferred drought resistance in pears may be due in part to minimizing symptoms of oxidative harm incurred in response to drought by the activities of antioxidants and by reducing the build-up of ROS and lipid peroxidation.


Assuntos
Betaína/farmacologia , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pyrus/metabolismo , Secas , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Pyrus/efeitos dos fármacos , Superóxido Dismutase/metabolismo
10.
Polymers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641132

RESUMO

The co-precipitation and in situ modified Hummers' method was used to synthesize Nickel Spinal Ferrites (NiFe) nanoparticles and NiFe coated with Thermally Reduced Graphene Oxide (TRGO) (NiFe-TRGO) nanoparticles, respectively. By using polyvinyl chloride (PVC), tetrahydrofuran (THF), and NiFe-TRGO, the nanocomposite film was synthesized using the solution casting technique with a thickness of 0.12-0.13 mm. Improved electromagnetic interference shielding efficiency was obtained in the 0.1-20 GHz frequency range. The initial assessment was done through XRD for the confirmation of the successful fabrication of nanoparticles and DC conductivity. The microstructure was analyzed with scanning electron microscopy. The EMI shielding was observed by incorporating a filler amount varying from 5 wt.% to 40 wt.% in three different frequency regions: microwave region (0.1 to 20 GHz), near-infrared (NIR) (700-2500 nm), and ultraviolet (UV) (200-400 nm). A maximum attenuation of 65 dB was observed with a 40% concentration of NiFe-TRGO in nanocomposite film.

11.
Biology (Basel) ; 10(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34681098

RESUMO

Pieris rapae and Pentodon algerinus are considered a global threat to agricultural crops and food security; hence, their control is a critical issue. Heterorhabditid and Steinernematid nematodes, along with their symbiotic bacteria, can achieve the optimal biocontrol agent criterion. Therefore, this study aimed to evaluate the efficacy of Heterorhabditis bacteriophora, Steinernema riobravis, and their symbiotic bacteria (Xenorhabdus and Photorhabdus) against P. rapae and P. algerinus larvae. The virulence of entomopathogenic nematodes (EPNs) was determined at different infective juvenile concentrations and exposure times, while the symbiotic bacteria were applied at the concentration of 3 × 107 colony-forming units (CFU)/mL at different exposure times. Gas chromatography-mass spectrophotometry (GC-MS) analysis and the cytotoxic effect of Photorhabdus sp. and Xenorhabdus sp. were determined. The results indicated that H. bacteriophora, S. riobravis, and their symbiotic bacteria significantly (p ≤ 0.001) induced mortality in both insect species. However, H. bacteriophora and its symbiont, Photorhabdus sp., were more virulent. Moreover, the data clarified that both symbiotic bacteria outperformed EPNs against P. rapae but the opposite was true for P. algerinus. GC-MS analysis revealed the main active compounds that have insecticidal activity. However, the results revealed that there was no significant cytotoxic effect. In conclusion, H. bacteriophora, S. riobravis, and their symbiotic bacteria can be an optimal option for bio-controlling both insect species. Furthermore, both symbiotic bacteria can be utilized independently on EPNs for the management of both pests, and, hence, they can be safely incorporated into biocontrol programs and tested against other insect pests.

12.
Nanomaterials (Basel) ; 11(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685113

RESUMO

Exposure of banana plants, one of the most important tropical and subtropical plants, to low temperatures causes a severe drop in productivity, as they are sensitive to cold and do not have a strong defense system against chilling. Therefore, this study aimed to improve the growth and resistance to cold stress of banana plants using foliar treatments of chitosan nanoparticles (CH-NPs). CH-NPs produced by nanotechnology have been used to enhance tolerance and plant growth under different abiotic stresses, e.g., salinity and drought; however, there is little information available about their effects on banana plants under cold stress. In this study, banana plants were sprayed with four concentrations of CH-NPs-i.e., 0, 100, 200, and 400 mg L-1 of deionized water-and a group that had not been cold stressed or undergone CH-NP treatment was used as control. Banana plants (Musa acuminata var. Baxi) were grown in a growth chamber and exposed to cold stress (5 °C for 72 h). Foliar application of CH-NPs caused significant increases (p < 0.05) in most of the growth parameters and in the nutrient content of the banana plants. Spraying banana plants with CH-NPs (400 mg L-1) increased the fresh and dry weights by 14 and 41%, respectively, compared to the control. A positive correlation was found between the foliar application of CH-NPs, on the one hand, and photosynthesis pigments and antioxidant enzyme activities on the other. Spraying banana plants with CH-NPs decreased malondialdehyde (MDA) and reactive oxygen species (ROS), i.e., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anions (O2•-). CH-NPs (400 mg L-1) decreased MDA, H2O2, •OH, and O2•- by 33, 33, 40, and 48%, respectively, compared to the unsprayed plants. We hypothesize that CH-NPs increase the efficiency of banana plants in the face of cold stress by reducing the accumulation of reactive oxygen species and, in consequence, the degree of oxidative stress. The accumulation of osmoprotectants (soluble carbohydrates, proline, and amino acids) contributed to enhancing the cold stress tolerance in the banana plants. Foliar application of CH-NPs can be used as a sustainable and economically feasible approach to achieving cold stress tolerance.

13.
Plants (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685865

RESUMO

The mango is one of the most valuable and appealing tropical fruits due to its color, aroma, tasteful remarkable flavor, and nutritive value; however, improving the yield and quality of mango is an urgent goal in order to combat global population growth. The application of amino acids and a micronutrient mixture might improve the yield and quality features but further research is still required in arid regions. To study the combined effect of a micronutrient mixture (MM) and amino acids (AA) at different rates, twenty-seven Fagri Kalan mango trees (15 years old) were carefully selected. The foliar application effect of MM and AA on vegetative growth, total chlorophyll, leaf chemical constituents, productivity, and the fruit quality of mango trees (cv. Fagri Kalan) was investigated. The findings revealed that the investigated growth measurements and leaf chemical contents, as well as the fruiting aspects and the fruit quality improved significantly due to the application of MM and AA. A higher application rate of the micronutrient mixture (2 g L-1) in combination with the highest amino acid concentration (2 mg L-1) was the most effective combination that increased the yield, total soluble solids (TSS), total sugars (TS), and total carbohydrates by 28.0%, 3.0%, 5.8% and 15.0%, respectively, relative to untreated plants. The relationship between such characteristics revealed a strong positive correlation (0.80-0.95), confirming the importance of these materials in increasing the yield and quality of mangoes. Thus, using doses of MM and AA as a foliar spray four times during each growing season is recommended under similar environmental conditions and horticulture practices used in the current experiment.

14.
Plants (Basel) ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685988

RESUMO

This study aimed to use organic fertilizers, e.g., compost and manures, and a halophytic plant [wavy-leaved saltbush (Atriplex undulata)] to remediate an agricultural soil polluted with toxic elements. Compost or manure (1% w/w) was added to a polluted soil in a pot trial. The application of the organic fertilizer, whether compost or manure, led to a significant improvement in the growth of the tested plant. From the physiological point of view, the application of organic fertilizers to polluted soil significantly increased the content of chlorophyll, carotenoid, and proline and, furthermore, led to a clear decrease in malondialdehyde (MDA) in the plant leaves. The highest significant values of organic carbon in the polluted soil (SOC) and cation exchange capacity (CEC) were found for the soil amended by compost and planted with wavy-leaved saltbush. Manure significantly reduced the soil pH to 7.52. Compost significantly decreased Zn, Cu, Cd, and Pb availability by 19, 8, 12, and 13%, respectively, compared to the control. On the other hand, manure increased Zn, Cu, Cd, and Pb availability by 8, 15, 18, and 14%, respectively. Compost and manure reduced the bioconcentration factor (BCF) and translocation factor (TF) of Cd and Pb. Compost was more effective in increasing the phytostabilization of toxic metals by wavy-leaved saltbush plants compared to manure. The results of the current study confirm that the application of non-decomposed organic fertilizers to polluted soils increases the risk of pollution of the ecosystem with toxic elements. The cultivation of contaminated soils with halophytic plants with the addition of aged organic materials, e. g., compost, is an effective strategy to reduce the spreading of toxic metals in the ecosystem, thus mitigating their introduction into the food chain.

15.
Food Sci Biotechnol ; 27(5): 1429-1438, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30319853

RESUMO

The present study was performed to assess anti-obesity effects of raw pineapple juice in high fat diet (HFD)-induced fatness. Based on food type, rats were divided into normal diet and HFD groups. When animals of HFD group become obese, they were given pineapple juice along with either HFD or normal diet. Blood biochemistry, liver and muscle gene expressions were analyzed. HFD induced significant elevations in body weight, body mass index (BMI), body fat accumulation, liver fat deposition and blood lipids while juice restored these parameters near to their normal values. Juice significantly decreased serum insulin and leptin while adiponectin was increased. Juice administration downregulated the increment of FAS and SERBP-1c mRNA expression in liver and upregulated HSL and GLUT-2 expressions. The muscular lipolytic CPT-1 expression was upregulted by juice treatment. Pineapple juice, therefore, may possibly be used as anti-obesity candidate where it decreased lipogenesis and increased lipolysis.

16.
Biomed Pharmacother ; 91: 602-610, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28494416

RESUMO

The study purported to define the effects of daily administration of vitamin E (Vit E) and selenium (Se) on antioxidant enzyme activity in mice treated with high doses of sodium azide (SA). Male mice were randomly split into nine groups. Groups 1, 2 and 3 were injected daily with saline, Vit E, and Se, respectively, while groups 4, 5 and 6 administrated with different doses of SA (low, medium and high, respectively). The mice in groups 7, 8 and 9 received 100mg/kg Vit E, 17.5mg/kg Se, and a combination of Vit E and Se, respectively before the SA-treatment. Hepatic, renal, testis and heart, antioxidant enzymes as well as levels of lipid peroxidation and total antioxidant capacity levels were determined. Vit E alone affected on the antioxidant parameters of the examined tissues. Se had a preventive effect on the decrease of antioxidant parameters caused by SA and improved the diminished activities of all of them. The study demonstrates that a high dose of SA may alter the effects of normal level antioxidant/oxidative status of male mice and that Se is effective in reducing the SA-damage. Se acts as a synergistic agent with the effect of Vit E in various damaged caused by SA.


Assuntos
Coração/efeitos dos fármacos , Rim/patologia , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Azida Sódica/toxicidade , Testículo/patologia , Vitamina E/farmacologia , Animais , Antioxidantes/metabolismo , Rim/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Testículo/efeitos dos fármacos
17.
J Basic Clin Physiol Pharmacol ; 27(4): 425-35, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27054601

RESUMO

BACKGROUND: Nanomaterials coating gained much concern in orthopedic implants and cosmetics. Drug combination may be a promising strategy for treating multi-factorial diseases. Titanium dioxide (TDN) nanoparticles are being widely used in many industries as well as in medicine and pharmacology. Therefore, increased human and environmental exposure can be expected, which has put TDN under toxicological scrutiny, and it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. The toxicity of titanium oxide nanoparticles (TDN) and salicylic acid (SA) separately or in combination was studied for 21 days. METHODS: The liver and kidney biomarker were determined, and hormones and oxidative stress levels were detected in mice. RESULTS: The intraperitoneal (i.p.) injection of TDN and SA in combination had a potential toxicological effect on major organs and hormonal homeostasis of mice. TDN and SA could antagonistically interact to affect the liver and kidney functions. No synergistic damage was observed in the liver function of mice that were treated with both TDN and SA as compared to the SA group. TDN acted as a synergistic agent to SA in the case of total cholesterol and total proteins levels. SA acted as antagonistic to the effect of TDN when injected together in mice because the effect on kidney functions is less than that predicted on the basis of the additive. The effect of co-administration of SA and TDN on the following hormones; triiodothyronine, thyroxine, estradiol II and insulin various among additive, potentiation, antagonistic and no effect, respectively as compared to TDN group. The interaction of TDN and SA was also found to induce oxidative stress as indicated by the increase in lipid peroxidation (LPO) levels. The decrease in the level of the reduced glutathione in the co-treated group indicated that there were no synergistic damages. SA and TDN co-administration could induce a potential increase in LPO levels in liver, kidney, and spleen but not in heart tissue. These results have not suggested that TDN and SA have a synergistic sub-chronic toxicity in mice after i.p. administration. SA may decrease the toxicity of TDN to some degree that could be related to the potentiation chemical reaction between SA and TDN. CONCLUSIONS: Our results suggested that the damage observed in mice treated with TDN and SA is organ-specific and associated with hormonal homeostasis and oxidative damage.


Assuntos
Hormônios/metabolismo , Nanopartículas/efeitos adversos , Ácido Salicílico/efeitos adversos , Titânio/efeitos adversos , Animais , Interações Medicamentosas , Glutationa/metabolismo , Rim/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Nanomedicina/métodos , Nanoestruturas/efeitos adversos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
18.
Biochimie ; 115: 203-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26093100

RESUMO

Despite its biological importance, iron is a pro-oxidant element and its accumulation results in tissue injury. Iron overload diseases such as thalassemia and hereditary hemochromatosis are commonly associated with liver tissue injury. Glutamyl cysteine (GC) is a dipeptide with antioxidant properties owing to its cysteine residue. The aim of the current work was to investigate the hepatoprotective effect of GC against iron overload-induced liver injury. Rats were distributed into five groups; normal control, GC control, iron-treated (150 mg/kg ip injection) and both iron and GC-treated (total iron: 150 mg/kg ip and GC: 50 mg or 100 mg/kg/day ip for 30 days). Our results showed that treatment with GC at the two-dose levels attenuated iron-induced liver tissue injury as evidenced by significant reduction in serum activity of liver enzymes ALT and AST, amelioration of iron-induced histopathological alteration, suppression of iron-induced oxidative stress as demonstrated by significant reduction of malondialdehyde and protein carbonyl content beside elevation of total antioxidant capacity, reduced glutathione and the antioxidant enzymes GPx and SOD in liver tissue. In addition, GC significantly reduced levels of the proinflammatory cytokines TNF-α, IL-6 and IL-1ß and activity of the apoptotic marker caspase-3 in liver tissues. To our surprise, GC reduced liver iron content and ferritin expression, denoting the possible iron chelation competency. Collectively our results highlight evidence for the hepatoprotective effect of GC against iron overload-induced liver injury that is potentially mediated through suppression of oxidative tissue injury, attenuation of inflammatory response, amelioration of hepatocellular apoptosis and possibly through iron chelation.


Assuntos
Antioxidantes/farmacologia , Dipeptídeos/farmacologia , Ferritinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sobrecarga de Ferro/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/lesões , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Caspase 3/metabolismo , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Dipeptídeos/uso terapêutico , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
19.
Exp Toxicol Pathol ; 67(1): 65-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25458753

RESUMO

Sodium azide (SA) is used as an active ingredient to control a broad spectrum of soil borne pathogens including insects, weeds, nematodes, fungi, and bacteria. The purpose of this study was to evaluate the ameliorator property of vitamin E (Vit E) or/and selenium (Se) against SA-induced injury in male mice at the biochemical, immunological and histological levels. The mice were divided into nine groups (10/group). The first three groups were served as control, Vit E and Se while, the second three groups were treated with three different doses of SA. The last three groups were treated with high dose of SA with Vit E or Se or Vit E and Se and all animals were treated for a period of 30 days. Exposure to SA at the three doses to mice led to an alternation of liver and kidney functions, decrease the testosterone concentration, decreased IgG and IgM levels as well as the increasing the TNF-α. The effects of SA on the biochemical parameters of mice were dose-dependent. Administration of Se or/and Vit E to SA-treated mice attenuates the toxicity of this compound, objectified by biochemical and histological improvement of liver, kidney and testis. But, the alleviation is more pronounced with the both antioxidants. Thus, the synergistic effect of Se and Vit E is most powerful in reducing the toxicity induced by SA and improving the humoral immune response of mice.


Assuntos
Antioxidantes/farmacologia , Imunidade Humoral/efeitos dos fármacos , Praguicidas/toxicidade , Selênio/farmacologia , Azida Sódica/toxicidade , Vitamina E/farmacologia , Animais , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testosterona/sangue
20.
Syst Biol Reprod Med ; 60(5): 282-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24871072

RESUMO

Many studies are aimed towards a solution for erectile dysfunction which is a worldwide health problem. Medicinal and natural herbal medications have been prescribed but their long-term effects are not well known. This study aimed to investigate the impact of the chronic administration of F. hermonis root extract on the structure of the male mice reproductive organs and their fertility and to study the possible protective role of vitamin C. Sixty male albino mice were divided into 3 groups: the control, the experimental group that received F. hermonis root extract orally (6 mg/kg) for six weeks, and the treated group that received F. hermonis plus vitamin C for six weeks. Serum testosterone level and mice fertility were assessed. At the end of the experiment mice were sacrificed; testis, epididymis, and seminal vesicle were dissected and processed for routine histopathological and immunohistochemical examination. The chronic administration of F. hermonis extract significantly decreased the level of testosterone and partially impaired fertility. Histopathological degenerative changes and a significant reduction in estrogen receptor (ER)ß expression were observed in testes, epididymis, and seminal vesicle. Vitamin C administration did not completely protect the testis from these harmful effects. Although F. hermonis roots are recommended to improve erectile and fertility problems, it should be used for short periods and with extreme caution. Further clinical studies to assess safety and efficacy are needed.


Assuntos
Disfunção Erétil/tratamento farmacológico , Ferula/química , Extratos Vegetais/uso terapêutico , Animais , Disfunção Erétil/patologia , Feminino , Masculino , Camundongos , Gravidez , Taxa de Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...