Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Endocrinol ; 70(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129170

RESUMO

Proteolytic cleavage of thyroglobulin (Tg) for thyroid hormone (TH) liberation is followed by TH release from thyroid follicles into the circulation, enabled by TH transporters. The existence of a functional link between Tg-processing cathepsin proteases and TH transporters has been shown to be independent of the hypothalamus-pituitary-thyroid axis. Thus, lack of cathepsin K, combined with genetic defects in the TH transporters Mct8 and Mct10, that is the Ctsk-/-/Mct8-/y/Mct10-/- genotype, results in persistent Tg proteolysis due to autophagy induction. Because amino acid transport by L-type amino acid transporter 2 (Lat2) has been described to regulate autophagy, we asked whether Lat2 availability is affected in Ctsk-/-/Mct8-/y/Mct10-/- thyroid glands. Our data revealed that while mRNA amounts and subcellular localization of Lat2 remained unaltered in thyroid tissue of Ctsk-/-/Mct8-/y/Mct10-/- mice in comparison to WT controls, the Lat2 protein amounts were significantly reduced. These data suggest a direct link between Lat2 function and autophagy induction in Ctsk-/-/Mct8-/y/Mct10-/- mice. Indeed, thyroid tissue of Lat2-/- mice showed enhanced endo-lysosomal cathepsin activities, increased autophagosome formation, and enhanced autophagic flux. Collectively, these results suggest a mechanistic link between insufficient Lat2 protein function and autophagy induction in the thyroid gland of male mice.


Assuntos
Sistemas de Transporte de Aminoácidos , Autofagia , Glândula Tireoide , Animais , Masculino , Camundongos , Autofagia/genética , Catepsinas , Genótipo
2.
Cells ; 10(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208608

RESUMO

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


Assuntos
Cílios/metabolismo , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Células Epiteliais da Tireoide/metabolismo , Animais , Humanos , Camundongos , Ratos
3.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071318

RESUMO

Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Receptores da Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Catepsina K/deficiência , Catepsina K/genética , Catepsina K/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Tireoglobulina/metabolismo , Glândula Tireoide/citologia , Hormônios Tireóideos/metabolismo , Tireotropina/sangue , Tireotropina/metabolismo
4.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466458

RESUMO

The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.


Assuntos
Autofagia/fisiologia , Catepsina K/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Transporte Biológico , Catepsina L/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipófise/metabolismo
5.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266306

RESUMO

The significance of cysteine cathepsins for the liberation of thyroid hormones from the precursor thyroglobulin was previously shown by in vivo and in vitro studies. Cathepsin L is most important for thyroglobulin processing in mice. The present study aims at specifying the possible contribution of its closest relative, cysteine cathepsin L2/V, to thyroid function. Immunofluorescence analysis on normal human thyroid tissue revealed its predominant localization at the apical plasma membrane of thyrocytes and within the follicle lumen, indicating the secretion of cathepsin V and extracellular tasks rather than its acting within endo-lysosomes. To explore the trafficking pathways of cathepsin V in more detail, a chimeric protein consisting of human cathepsin V tagged with green fluorescent protein (GFP) was stably expressed in the Nthy-ori 3-1 thyroid epithelial cell line. Colocalization studies with compartment-specific markers and analyses of post-translational modifications revealed that the chimeric protein was sorted into the lumen of the endoplasmic reticulum and subsequently transported to the Golgi apparatus, while being N-glycosylated. Immunoblotting showed that the chimeric protein reached endo-lysosomes and it became secreted from the transduced cells. Astonishingly, thyroid stimulating hormone (TSH)-induced secretion of GFP-tagged cathepsin V occurred as the proform, suggesting that TSH upregulates its transport to the plasma membrane before it reaches endo-lysosomes for maturation. The proform of cathepsin V was found to be reactive with the activity-based probe DCG-04, suggesting that it possesses catalytic activity. We propose that TSH-stimulated secretion of procathepsin V is the default pathway in the thyroid to enable its contribution to thyroglobulin processing by extracellular means.


Assuntos
Catepsinas/biossíntese , Células Epiteliais da Tireoide/metabolismo , Tireotropina/metabolismo , Sequência de Aminoácidos , Biomarcadores , Catepsinas/química , Catepsinas/genética , Linhagem Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Imunofluorescência , Expressão Gênica , Genes Reporter , Glicosilação , Humanos , Lisossomos/metabolismo , Transporte Proteico , Glândula Tireoide/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118846, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910988

RESUMO

Altered expression and/or localization of cysteine cathepsins is believed to involve in thyroid diseases including cancer. Here, we examined the localization of cathepsins B and V in human thyroid tissue sections of different pathological conditions by immunolabeling and morphometry. Cathepsin B was mostly found within endo-lysosomes as expected. In contrast, cathepsin V was detected within nuclei, predominantly in cells of cold nodules, follicular and papillary thyroid carcinoma tissue, while it was less often detected in this unusual localization in hot nodules and goiter tissue. To understand the significance of nuclear cathepsin V in thyroid cells, this study aimed to establish a cellular model of stable nuclear cathepsin V expression. As representative of a specific form lacking the signal peptide and part of the propeptide, N-terminally truncated cathepsin V fused to eGFP recapitulated the nuclear localization of endogenous cathepsin V throughout the cell cycle in Nthy-ori 3-1 cells. Interestingly, the N-terminally truncated cathepsin V-eGFP was more abundant in the nuclei during S phase. These findings suggested a possible contribution of nuclear cathepsin V forms to cell cycle progression. Indeed, we found that N-terminally truncated cathepsin V-eGFP expressing cells were more proliferative than those expressing full-length cathepsin V-eGFP or wild type controls. We conclude that a specific molecular form of cathepsin V localizes to the nucleus of thyroid epithelial and carcinoma cells, where it might involve in deregulated pathways leading to hyperproliferation. These findings highlight the necessity to better understand cathepsin trafficking in health and disease. In particular, cell type specificity of mislocalization of cysteine cathepsins, which otherwise act in a functionally redundant manner, seems to be important to understand their non-canonical roles in cell cycle progression.


Assuntos
Catepsinas/genética , Núcleo Celular/genética , Cisteína Endopeptidases/genética , Células Epiteliais da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Lisossomos/genética , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
7.
Foods ; 9(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069984

RESUMO

Medicinal plants contain various secondary metabolites. The present study analyzed the essential oil of buds from clove (Syzygium aromaticum L.; Family: Myrtaceae) using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of six major phytoconstituents, such as eugenol (66.01%), caryophyllene (19.88%), caryophyllene oxide (5.80%), phenol, 2-methoxy-4-(2-propenyl)-acetate (4.55%), and humulene (3.75%). The effect of clove essential oils (CEO) at 0%, 1%, 2%, and 3% (w/w) on the mechanical and barrier properties of starch films was evaluated. The tensile strength (TS) and elongation (E) of films with clove essential oil were 6.25 ± 0.03 MPa and 5.67% ± 0.08%, respectively. The antioxidant activity of the films significantly increased the millet starch film and presented the lowest antioxidant activity (0.3%) at a 30 minute incubation for the control sample, while increasing CEO fraction in the starch film lead to an increase in antioxidant activity, and the 3% CEO combined film presented the highest antioxidant activity (15.96%) at 90 min incubation. This finding could be explained by the incorporation of clove oil containing antioxidant properties that significantly increased with the incorporation of CEO (p < 0.05). A zone of inhibition ranging from 16 to 27 mm in diameter was obtained when using a concentration of CEO ranging from 1% to 3%. We also observed the presence of an antimicrobial activity on several tested microorganism including Escherichia coli, Pseudomonas aeruginosa, Enterobacter sp, Bacillus cereus, Staphylococcus aureus, and Trichoderma fungi. Thus, the current study reveals the possibility of using a millet starch edible film as a preservation method.

8.
Exp Clin Endocrinol Diabetes ; 128(6-07): 437-445, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32074633

RESUMO

This mini-review asks how self-regulation of the thyroid gland is realized at the cellular and molecular levels by canonical and non-canonical means. Canonical pathways of thyroid regulation comprise thyroid stimulating hormone-triggered receptor signaling. As part of non-canonical regulation, we hypothesized an interplay between protease-mediated thyroglobulin processing and thyroid hormone release into the circulation by means of thyroid hormone transporters like Mct8. We proposed a sensing mechanism by different thyroid hormone transporters, present in specific subcellular locations of thyroid epithelial cells, selectively monitoring individual steps of thyroglobulin processing, and thus, the cellular thyroid hormone status. Indeed, we found that proteases and thyroid hormone transporters are functionally inter-connected, however, in a counter-intuitive manner fostering self-thyrotoxicity in particular in Mct8- and/or Mct10-deficient mice. Furthermore, the possible role of the G protein-coupled receptor Taar1 is discussed, because we detected Taar1 at cilia of the apical plasma membrane of thyrocytes in vitro and in situ. Eventually, through pheno-typing Taar1-deficient mice, we identified a co-regulatory role of Taar1 and the thyroid stimulating hormone receptors. Recently, we showed that inhibition of thyroglobulin-processing enzymes results in disappearance of cilia from the apical pole of thyrocytes, while Taar1 is re-located to the endoplasmic reticulum. This pathway features a connection between thyrotropin-stimulated secretion of proteases into the thyroid follicle lumen and substrate-mediated self-assisted control of initially peri-cellular thyroglobulin processing, before its reinternalization by endocytosis, followed by extensive endo-lysosomal liberation of thyroid hormones, which are then released from thyroid follicles by means of thyroid hormone transporters.


Assuntos
Homeostase/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transdução de Sinais/fisiologia , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Humanos , Receptores Acoplados a Proteínas G
9.
Biochimie ; 166: 270-285, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31302164

RESUMO

Taar1 is a G protein-coupled receptor (GPCR) confined to primary cilia of rodent thyroid epithelial cells. Taar1-deficient mouse thyroid follicles feature luminal accumulation of thyroglobulin suggesting that Taar1 acts as a regulator of extra- and pericellular thyroglobulin processing, which is mediated by cysteine cathepsin proteases present at the apical plasma membrane of rodent thyrocytes. Here, by immunostaining and confocal laser scanning microscopy, we demonstrated co-localization of cathepsin L, but only little cathepsin B, with Taar1 at primary cilia of rat thyrocytes, the FRT cells. Because proteases were shown to affect half-lives of certain receptors, we determined the effect of cathepsin activity inhibition on sub-cellular localization of Taar1 in FRT cells, whereupon Taar1 localization altered such that it was retained in compartments of the secretory pathway. Since the same effect on Taar1 localization was observed in both cathepsin B and L inhibitor-treated cells, the interaction of cathepsin activities and sub-cellular localization of Taar1 was thought to be indirect. Indeed, we observed that cathepsin inhibition resulted in a lack of primary cilia from FRT cells. Next, we proved that primary cilia are a necessity for Taar1 trafficking to reach the plasma membrane of FRT cells, since the disruption of primary cilia by treatment with ß-cyclodextrin resulted in Taar1 retention in compartments of the secretory pathway. Furthermore, in less well-polarized rat thyrocytes, namely in FRTL-5 cells lacking primary cilia, Taar1 was mainly confined to the compartments of the secretory pathway. We conclude that Taar1 localization in polarized thyroid epithelial cells requires the presence of primary cilia, which is dependent on the proteolytic activity of cysteine cathepsins B and L.


Assuntos
Catepsina B/metabolismo , Catepsina L/metabolismo , Cílios/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Epiteliais da Tireoide/metabolismo , Animais , Catepsina B/antagonistas & inibidores , Catepsina L/antagonistas & inibidores , Linhagem Celular , Transporte Proteico/efeitos dos fármacos , Células Epiteliais da Tireoide/citologia
10.
BMC Complement Altern Med ; 15: 364, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26470706

RESUMO

BACKGROUND: Rhododendron leaf extracts were previously found to exert antimicrobial activities against a range of Gram-positive bacteria. In this study, we investigated which of the extracts with these antimicrobial properties would be best suited for further exploitation. Specifically, the project aims to identify biologically active compounds that affect bacterial but not mammalian cells when applied in medical treatments such as lotions for ectopic application onto skin, or as orally administered drugs. METHODS: Different concentrations of DMSO-dissolved remnants of crude methanol Rhododendron leaf extracts were incubated for 24 h with cultured epidermal keratinocytes (human HaCaT cell line) and epithelial cells of the intestinal mucosa (rat IEC6 cell line) and tested for their cytotoxic potential. In particular, the cytotoxic potencies of the compounds contained in antimicrobial Rhododendron leaf extracts were assessed by quantifying their effects on (i) plasma membrane integrity, (ii) cell viability and proliferation rates, (iii) cellular metabolism, (iv) cytoskeletal architecture, and (v) determining initiation of cell death pathways by morphological and biochemical means. RESULTS: Extracts of almost all Rhododendron species, when applied at 500 µg/mL, were potent in negatively affecting both keratinocytes and intestine epithelial cells, except material from R. hippophaeoides var. hippophaeoides. Extracts of R. minus and R. racemosum were non-toxic towards both mammalian cell types when used at 50 µg/mL, which was equivalent to their minimal inhibitory concentration against bacteria. At this concentration, leaf extracts from three other highly potent antimicrobial Rhododendron species proved non-cytotoxic against one or the other mammalian cell type: Extracts of R. ferrugineum were non-toxic towards IEC6 cells, and extracts of R. rubiginosum as well as R. concinnum did not affect HaCaT cells. In general, keratinocytes proved more resistant than intestine epithelial cells against the treatment with compounds contained in Rhododendron leaf extracts. CONCLUSIONS: We conclude that leaf extracts from highly potent antimicrobial R. minus and R. racemosum are safe to use at 50 µg/mL in 24-h incubations with HaCaT keratinocytes and IEC6 intestine epithelial cells in monolayer cultures. Extracts from R. rubiginosum as well as R. concinnum or R. ferrugineum are applicable to either keratinocytes or intestinal epithelial cells, respectively. Beyond the scope of the current study, further experiments are required to identify the specific compounds contained in those Rhododendron leaf extracts that exert antimicrobial activity while being non-cytotoxic when applied onto human skin or gastrointestinal tract mucosa. Thus, this study supports the notion that detailed phytochemical profiling and compound identification is needed for characterization of the leaf extracts from specific Rhododendron species in order to exploit their components as supplementary agents in antimicrobial phyto-medical treatments.


Assuntos
Células Epiteliais/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/toxicidade , Rhododendron/química , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Intestinos/citologia , Queratinócitos/ultraestrutura , Testes de Sensibilidade Microbiana , Folhas de Planta/química
11.
Protoplasma ; 252(3): 755-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25398648

RESUMO

Proteases play essential roles in protein degradation, protein processing, and extracellular matrix remodeling in all cell types and tissues. They are also involved in protein turnover for maintenance of homeostasis and protein activation or inactivation for cell signaling. Proteases range in function and specificity, with some performing distinct substrate cleavages, while others accomplish proteolysis of a wide range of substrates. As such, different cell types use specialized molecular mechanisms to regulate the localization of proteases and their function within the compartments to which they are destined. Here, we focus on the cysteine family of cathepsin proteases and legumain, which act predominately within the endo-lysosomal pathway. In particular, recent knowledge on cysteine cathepsins and their primary regulator legumain is scrutinized in terms of their trafficking to endo-lysosomal compartments and other less recognized cellular locations. We further explore the mechanisms that regulate these processes and point to pathological cases which arise from detours taken by these proteases. Moreover, the emerging biological roles of specific forms and variants of cysteine cathepsins and legumain are discussed. These may be decisive, pathogenic, or even deadly when localizing to unusual cellular compartments in their enzymatically active form, because they may exert unexpected effects by alternative substrate cleavage. Hence, we propose future perspectives for addressing the actions of cysteine cathepsins and legumain as well as their specific forms and variants. The increasing knowledge in non-canonical aspects of cysteine cathepsin- and legumain-mediated proteolysis may prove valuable for developing new strategies to utilize these versatile proteases in therapeutic approaches.


Assuntos
Catepsinas/metabolismo , Biologia Celular , Cisteína Endopeptidases/metabolismo , Proteólise , Animais , Humanos , Lisossomos/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...