Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34684925

RESUMO

Throughout human history, any society's capacity to fabricate and refine new materials to satisfy its demands has resulted in advances to its performance and worldwide standing. Life in the twenty-first century cannot be predicated on tiny groupings of materials; rather, it must be predicated on huge families of novel elements dubbed "advanced materials". While there are several approaches and strategies for fabricating advanced materials, mechanical milling (MM) and mechanochemistry have garnered much interest and consideration as novel ways for synthesizing a diverse range of new materials that cannot be synthesized by conventional means. Equilibrium, nonequilibrium, and nanocomposite materials can be easily obtained by MM. This review article has been addressed in part to present a brief history of ball milling's application in the manufacture of a diverse variety of complex and innovative materials during the last 50 years. Furthermore, the mechanism of the MM process will be discussed, as well as the factors affecting the milling process. Typical examples of some systems developed at the Nanotechnology and Applications Program of the Kuwait Institute for Scientific Research during the last five years will be presented in this articles. Nanodiamonds, nanocrystalline hard materials (e.g., WC), metal-matrix and ceramic matrix nanocomposites, and nanocrystalline titanium nitride will be presented and discussed. The authors hope that the article will benefit readers and act as a primer for engineers and researchers beginning on material production projects using mechanical milling.

2.
Int J Biol Macromol ; 101: 1041-1050, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28366847

RESUMO

Polylactide (PLA) nanocomposites characterized by antimicrobial properties are gaining increasing attention for food packaging. In this contribution, the PLA based nanocomposite films with multifunctional end-use properties were achieved by incorporating ZnO nanoparticles (NPs) [untreated: ZnO(UT) and 3-methacryloxypropyltrimethoxysilane treated: ZnO(ST)] into polymer matrix via solvent casting method. The ZnO(ST) prevented the degradation of PLA at higher temperature and improved the mechanical property. Color, transparency, and anti-UV properties of composite films were influenced by the incorporation of ZnO NPs. Contrary to untreated ZnO, the treated NPs were more effective in enhancing the tortuosity of the diffusive path for the oxygen molecules to diffuse through the film. The glass transition (Tg) and crystallization (Tc) temperatures of composites were improved by the addition of ZnO, whereas a higher Tg was recorded for ZnO(ST) loaded films. XRD demonstrated the change in crystallinity of the films with NPs addition. Nanoparticles well distributed in the composite films as observed through SEM however spots of agglomeration were observed for PLA/ZnO(UT) films. Developed films especially incorporated with ZnO(ST) were found to be active against both Gram-negative (Salmonella Typhimurium) and Gram-positive (Listeria monocytogenes) bacteria. Therefore, PLA/ZnO nanocomposite films could be considered as environment-friendly active packaging material for food preservation.


Assuntos
Antibacterianos/química , Metacrilatos/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Silanos/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Fenômenos Mecânicos , Oxigênio/química , Permeabilidade , Poliésteres/farmacologia , Salmonella typhimurium/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA