Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 16(4): 272-294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30674256

RESUMO

Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.


Assuntos
Analgésicos/química , Antibacterianos/química , Antineoplásicos/química , Quitosana/química , Sistemas de Liberação de Medicamentos , Nanofibras/química , Animais , Humanos , Nanomedicina
2.
Mar Drugs ; 13(4): 1710-25, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25826718

RESUMO

The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems.


Assuntos
Quitosana/química , Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Hipoglicemiantes/administração & dosagem , Insulina Regular Humana/administração & dosagem , Nanopartículas/química , Acetilação , Administração Oral , Animais , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Composição de Medicamentos , Eletrólitos/química , Humanos , Hiperglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Insulina Regular Humana/uso terapêutico , Masculino , Peso Molecular , Nanopartículas/ultraestrutura , Tamanho da Partícula , Distribuição Aleatória , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Propriedades de Superfície , Viscosidade
3.
J Pharm Sci ; 104(1): 257-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25417766

RESUMO

Paracetamol has an extensive first-pass metabolism that highly affects its bioavailability (BA); thus, dose may be repeated several times a day in order to have longer efficacy. However, hepatotoxicity may arise because of paracetamol metabolism. Therefore, this project aimed to increase paracetamol BA in rats by glucosamine (GlcN). At GlcN-paracetamol racemic mixture ratio of 4:1 and paracetamol dose of 10 mg/kg, paracetamol area under the curve (AUC) and maximum concentration (Cmax ) were significantly increased by 99% and 66%, respectively (p < 0.05). Furthermore, paracetamol AUC and Cmax levels were increased by 165% and 88% in rats prefed with GlcN for 2 days (p < 0.001). Moreover, GlcN significantly reduced phase Ι and phase I/ΙΙ metabolic reactions in liver homogenate by 48% and 54%, respectively. Furthermore, GlcN molecule was found to possess a good in silico binding mode into the CYP2E1 active site-forming bidentate hydrogen bonding with the Thr303 side chain. Finally, serum ALT and AST levels of rats-administered high doses of paracetamol were significantly reduced when rats were prefed with GlcN (p < 0.01). In conclusion, GlcN can increase the relative BA of paracetamol through reducing its metabolism. This phenomenon is associated with reduction in hepatocytes injury following ingestion of high doses of paracetamol.


Assuntos
Acetaminofen/farmacocinética , Analgésicos não Narcóticos/farmacocinética , Inibidores do Citocromo P-450 CYP2E1/uso terapêutico , Suplementos Nutricionais , Interações Alimento-Droga , Glucosamina/uso terapêutico , Fígado/metabolismo , Acetaminofen/antagonistas & inibidores , Acetaminofen/sangue , Acetaminofen/intoxicação , Analgésicos não Narcóticos/sangue , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/intoxicação , Animais , Antipiréticos/antagonistas & inibidores , Antipiréticos/sangue , Antipiréticos/farmacocinética , Antipiréticos/intoxicação , Disponibilidade Biológica , Biotransformação , Configuração de Carboidratos , Domínio Catalítico , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP2E1/metabolismo , Inibidores do Citocromo P-450 CYP2E1/química , Inibidores do Citocromo P-450 CYP2E1/metabolismo , Bases de Dados de Proteínas , Feminino , Glucosamina/química , Glucosamina/metabolismo , Humanos , Ligantes , Fígado/efeitos dos fármacos , Fígado/enzimologia , Simulação de Acoplamento Molecular , Conformação Proteica , Ratos Sprague-Dawley
4.
Eur J Pharm Biopharm ; 65(2): 188-97, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17027244

RESUMO

The influence of micelle-drug solubilization on the dissolution rate of monodisperse particles of benzocaine has been investigated. A model describing and predicting the initial dissolution rates of spherical particles was derived starting from the boundary layer theory. The dissolution rate of benzocaine spherical particles was determined in water and in solutions of sodium lauryl sulfate (SLS) under static conditions. The derived model was applied to the experimental data. The diffusion coefficients and the aqueous diffusion layer values were estimated from the experimental results and the aforementioned model. The diffusion coefficients and the boundary layer thickness values were also obtained experimentally from the rotating disk method and were used to predict the initial dissolution rates. Excellent correlations were obtained between the experimental and the calculated values at low micellar concentrations. However, obvious deviation was observed at high micellar concentrations. The results obtained from this study suggest that it is possible to predict the initial dissolution rates of monodisperse particles in micellar systems.


Assuntos
Microesferas , Tensoativos/química , Algoritmos , Anestésicos Locais/administração & dosagem , Anestésicos Locais/química , Benzocaína/administração & dosagem , Benzocaína/química , Cromatografia Líquida de Alta Pressão , Convecção , Difusão , Estabilidade de Medicamentos , Cinética , Micelas , Modelos Estatísticos , Dodecilsulfato de Sódio , Solubilidade , Espectrofotometria Ultravioleta , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...