Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(2): 107, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33532931

RESUMO

In many parts of the world, groundwater is considered to be a key source of fresh water for both the domestic and non-domestic sectors. Where groundwater extraction is implemented, systems to monitor water quality must ensure a safe and sustainable supply. Over the years, Iraq has suffered from surface water quality and supply problems, necessitating groundwater extraction in many regions. This study investigates groundwater quality in a region of central Iraq around Babylon city, covering an area of 5119 km2. The data gathered for this study included maps, well locations and water quality data and was sourced from the relevant governmental departments. A base map of the focussed region was initially prepared following data collection. The analysed water quality parameters were used as an attribute database to produce thematic maps using a geographical information system (GIS) environment. In this paper, the water quality index (WQI) and the irrigation water quality index (IWQI) were calculated for different groundwater samples using various parameters including the Electrical Conductivity (EC), Cl-, HCO3-, Na+ and pH. Moreover, the groundwater suitability for irrigation purposes has been assessed using indices such as Kelly's ratio (KR), sodium absorption ratio (SAR), residual sodium carbonate (RSC), soluble sodium percentage (SSP) and permeability index (PI). Water quality index maps have been developed using the GIS environment. The obtained results reveal that the groundwater in the study location requires specific treatments to be usable.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Água Potável/análise , Monitoramento Ambiental , Sistemas de Informação Geográfica , Iraque , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água
2.
Membranes (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629753

RESUMO

The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values significantly affected the permeation flux of the Pb2+ solution but only had a slight effect on the Cd2+ solution. However, Cd2+ rejection was highly improved by increasing the pH value. The rejection of the PES membranes increased greatly as the heavy metal concentration rose, while the heavy metal concentration moderately affected the permeation flux. The maximum rejection of Pb2+ in a single-salt solution was 99%, 97.5%, and 98% for a feed solution containing 10 mg Pb/L at pH 6, 6.2, and 5.7, for PES1, PES2, and PES3, respectively. The maximum rejection of Cd2+ in single-salt solutions was 78%, 50.2%, and 44% for a feed solution containing 10 mg Cd/L at pH 6.5, 6.2, and 6.5, for PES1, PES2, and PES3, respectively. The analysis of the experimental data using the CFSD, CFSK, and CFFP models showed a good agreement between the theoretical and experimental results. The effective membrane thickness and active skin layer thickness were evaluated using the CFFP model, indicating that the Péclet number is important for determining the mechanism of separation by diffusion.

3.
J Hazard Mater ; 320: 241-251, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544737

RESUMO

A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr2+ ions from an aqueous phase. The encapsulation of the Sr2+ using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...