Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446456

RESUMO

Hierarchical aggregates of anatase TiO2 nanoribbons/nanosheets (TiO2-NR) and anatase TiO2 nanoparticles (TiO2-NP) were produced through a one-step solvothermal reaction using acetic acid or ethanol and titanium isopropoxide as solvothermal reaction systems. The crystalline structure, crystalline phase, and morphologies of synthesized materials were characterized using several techniques. According to our findings, both TiO2-NR and TiO2-NP were found to have polycrystalline structures, with pure anatase phases. TiO2-NR has a three-dimensional hierarchical structure made up of aggregates of TiO2 nanoribbons/nanosheets, while TiO2-NP has a nanoparticulate structure. The photocatalytic and photocurrent activities for TiO2-NR and TiO2-NP were investigated and compared with the widely used commercial TiO2 (P25), which consists of anatase/rutile TiO2 nanoparticles, as a reference material. Our findings showed that TiO2-NR has higher photocatalytic and photocurrent performance than TiO2-NP, which are both, in turn, higher than those of P25. Our developed solvothermal method was shown to produce a pure anatase TiO2 phase for both synthesized structures, without using any surfactants or any other assisted templates. This developed solvothermal approach, and its anatase TiO2 nanostructure output, has promising potential for a wide range of energy harvesting applications, such as water pollution treatment and solar cells.

2.
Sci Technol Adv Mater ; 24(1): 2277678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38415267

RESUMO

Ultraviolet (UV) radiation causes serious health risks. Inorganic metal oxides, such as titanium dioxide (TiO2) and zinc oxide (ZnO), have long been recognized for their effectiveness as UV radiation filters/blockers in sunscreen formulations. TiO2 and ZnO as UV-blocking materials have some limitations and issues such as producing harmful radicals and toxicity, respectively. As a result, there is a growing need to develop efficient and safe UV-blocking materials to overcome these limitations associated with the conventional TiO2 and ZnO materials. Zinc stannate (Zn2SnO4), as a ternary metal oxide, is expected to be a promising candidate due to its optical properties and potential for UV-blocking capability. This study presents a comprehensive investigation into the development and characterization of Zn2SnO4 as a potential alternative UV filter to TiO2 and ZnO. The fundamental characteristics, including structural, optical, and photocatalytic characteristics, as well as cell viability, were investigated for two Zn2SnO4 morphologies: cubic aggregate Zn2SnO4 nanoparticles (ZTO CANP) and Zn2SnO4 nanoparticles (ZTO NP), which were compared with the performance of TiO2 nanoparticles (TiO2 NP) and ZnO nanoparticles (ZnO NP). Interestingly, in addition to their promising UVB and partial UVA blocking properties, ZTO CANP and ZTO NP were found to be relativity photocatalytically inactive materials, which means they produce less free radical species as in the case of TiO2 NP, and they cannot be considered as toxic materials as in the case of ZnO NP. To the best of our knowledge, this is the first direct comparison study examining the performance of Zn2SnO4 ternary metal oxide for its potential use as a UV filter. Further research and optimization need to be conducted on these materials, particularly on ZTO CANP as a promising alternative UV filter.


This study investigates the development and characterization of zinc stannate (Zn2SnO4) as a potential alternative UV-blocking material for sunscreen formulations. Despite their effectiveness as UV radiation filters, TiO2 and ZnO have harmful radicals and toxicity, respectively. The study focuses on two Zn2SnO4 morphologies: cubic aggregate Zn2SnO4 nanoparticles (ZTO CANP) and Zn2SnO4 nanoparticles (ZTO NP). They showed promising UVB and partial UVA blocking. Their UV blocking range seems to be an average of the blocking profile of TiO2 and ZnO. ZTO CANP and ZTO NP are found to be photocatalytically inactive, producing less free radical species and not being toxic. To the best of our knowledge, this is the first direct comparison study examining the performance of Zn2SnO4 ternary metal oxide for its potential use as a UV filter.

3.
Environ Sci Pollut Res Int ; 29(25): 37633-37643, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066842

RESUMO

Bismuth molybdate (Bi2MoO6) nanostructures has attracted many researches as an advanced photocalysts for the organic contaminants. In this paper, bismuth molybdate Bi2MoO6 nanoparticles were synthesized using a simple hydrothermal method at varied pH (2, 4, 6, 8, and 10) for 15 h at 180 °C. The results reveal the variation pH precursor solutions have a significant impact on the morphology, phase formations, and photocatalytic activity of samples. The synthesized samples at low pH level were characterized by FESEM analysis revealing Bi2MoO6 nanoplates have formed while gradually convert to Bi2MoO6 spherical nanoparticle at high PH level as shown in energy dispersive X-ray spectroscopy (DES) peaks. The X-ray diffraction patterns reveal characteristic peaks corresponding to mixed phases of Bi2MoO6 and cubic Bi4MoO9 at high pH value. The optical absorption study exhibit Bi2MoO6 nanoplates absorbed visible light with blue shift when compared to the cubic Bi4MoO9 structures. Moreover, the photocatalytic activity results revealed that nanoplates in pH = 4 sample has excellent photocatalytic activity for degradation of rhodamine (RhB), methylene orange (MO), and phenol under visible-light irradiation (λ > 400 nm) as well as exhibit the photodegradation 90% of phenol within 300 min.


Assuntos
Poluentes Ambientais , Nanoestruturas , Bismuto/química , Catálise , Concentração de Íons de Hidrogênio , Molibdênio , Fenóis
4.
Dalton Trans ; 46(44): 15582-15588, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29094127

RESUMO

The photocatalytic activity of ferroelectric materials is highly influenced by the main direction of charge separation, originating from spontaneous polarization. In this work, unique bismuth silicate based zero-dimensional (0D)/two-dimensional (2D) heterogeneous nanostructures were successfully constructed. In contrast to either individual pristine phase, this heterogeneous structure exhibited much enhanced photocatalytic activity towards the degradation of Rhodamine B and phenol. The synergistic effects of high polarization in 2D ferroelectric Bi2SiO5 nanosheets and the band bending at the 0D-2D interface of the heterostructures have been proved to accelerate the photoinduced charge separation and the movement of separated carriers to the interface, which further improves the photodegradation performance. This work provides a novel strategy for adjusting the photoinduced carrier transfer route in the ferroelectric materials and designing novel photocatalysts with ultrafast charge separation and large active surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...