Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(35): 21213-30, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26124272

RESUMO

Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow on- and off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling.


Assuntos
Selectina E/metabolismo , Receptores de Hialuronatos/metabolismo , Glicoproteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Linhagem Celular Tumoral , Movimento Celular , Humanos , Imunoprecipitação , Ligação Proteica , Mapeamento de Interação de Proteínas
3.
Biophys J ; 101(2): 336-44, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21767485

RESUMO

The coupling between cell-cell and cell-matrix adhesion systems is known to affect the stability of the adhesive status of cells, as well as tissue cohesion. In this work, we perform quantitative assays of integrin-cadherin cross talk in controlled and reproducible conditions. This is achieved by plating cells on microprinted fibronectin patterns of different sizes, and simulating the formation of an intercellular contact with a microbead coated with E-cadherin extracellular domains and brought to the cell membrane. Using an optical trap, we measure the average rigidity modulus of the E-cadherin bead-cell contact as a function of the contact incubation time and of the cell spreading area. For a given incubation time, this rigidity modulus decreases by three orders of magnitude as the cell-matrix contact area, A, increases from 100 to 700 µm(2). In a similar way, the dynamics of formation of the bead-cell contact gets slower as this area increases. This is clear evidence for a strong negative feedback from cell-fibronectin onto cell-cell adhesive contacts, for which we discuss some possible mechanisms.


Assuntos
Caderinas/metabolismo , Retroalimentação Fisiológica , Integrinas/metabolismo , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Carbocianinas/metabolismo , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Ácido Egtázico/farmacologia , Módulo de Elasticidade/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Fibronectinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Microesferas , Oligopeptídeos/farmacologia , Polilisina/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo
4.
C R Biol ; 334(7): 505-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21784360

RESUMO

This Note presents experimental evidence that a hyperbolic tissue flow plays an important role in the establishment of the organization plan of vertebrates. We have followed the development of chicken embryos from the gastrula stage up to the moment when the body plan is recognizable. We have found that establishment of this plan occurs in the presence of a uniform tissue flow which at all stages presents a hyperbolic pattern. The flow is bidirectional in the antero-posterior direction, with a fixed point (stagnation point of the flow) which is a point of zero speed in all directions, in the reference frame of the egg. This stagnation point of the flow is located at the level of the presumptive yolk stalk of the chicken (analogous to the mammal navel). On either sides (left and right) of the body, the flow is also bidirectional. The antero-posterior bidirectionality and the left-right bidirectionality result in splitting of the embryo into four domains with vortex-like flow, with partial mirror symmetry between the left/right halves and top/bottom ones. The center of symmetry is the stagnation point. The broken symmetry of the flow is up-scaled in the adult animal. Areas with straightforward tissue movement are the ones where axial structures develop. The lateral domains with vortex-like flow colocalize with the future limb plates.


Assuntos
Morfogênese , Vertebrados/embriologia , Animais , Embrião de Galinha , Modelos Biológicos , Fatores de Tempo
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 1): 021920, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20365608

RESUMO

It is getting increasingly evident that physical properties such as elastoviscoplastic properties of living materials are quite important for the process of tissue development, including regulation of genetic pathways. Measuring such properties in vivo is a complicated and challenging task. In this paper, we present an instrument, a scanning air puff tonometer, which is able to map point by point the viscoelastic properties of flat or gently curved soft materials. This instrument is an improved version of the air puff tonometer used by optometrists, with important modifications. The instrument allows one to obtain a direct insight into gradients of material properties in vivo. The instrument capabilities are demonstrated on substances with known elastoviscoplastic properties and several biological objects. On the basis of the results obtained, the role of the gradients of elastoviscoplastic properties is outlined for the process of angiogenesis, limb development, bacterial colonies expansion, etc. which is important for bridging the gaps in the theory of the tissue development and highlighting new possibilities for tissue engineering, based on a clarification of the role of physical features in developing biological material.


Assuntos
Ar , Biologia/instrumentação , Manometria/métodos , Animais , Artérias/fisiologia , Elasticidade , Análise de Elementos Finitos , Humanos , Botões de Extremidades/fisiologia , Neoplasias Hepáticas/fisiopatologia , Neovascularização Fisiológica , Proteus mirabilis/fisiologia , Propriedades de Superfície , Veias/fisiologia , Viscosidade
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 1): 051912, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18643107

RESUMO

The adult vasculature is comprised of three distinct compartments: the arteries, which carry blood away from the heart and display a divergent flow pattern; the capillaries, where oxygen and nutrient delivery from blood to tissues, as well as metabolic waste removal, occurs; and the veins, which carry blood back to the heart and are characterized by a convergent flow pattern. These compartments are organized in series as regard to flow, which proceeds from the upstream arteries to the downstream veins through the capillaries. However, the spatial organization is more complex, as veins may often be found paralleling the arteries. The factors that control the morphogenesis of this hierarchically branched vascular network are not well characterized. Here, we explain how arteries exert a morphological control on the venous pattern. Indeed, during vertebrate development, the following transition may be observed in the spatial organization of the vascular system: veins first develop in series with the arteries, the arterial and venous territories being clearly distinct in space (cis-cis configuration). But after some time, new veins grow parallel to the existing arteries, and the arterial and venous territories become overlapped, with extensive and complex intercalation and interdigitation. Using physical arguments, backed up by experimental evidence (biological data from the literature and in situ optical and mechanical measurements of the chick embryo yolk-sac and midbrain developing vasculatures), we explain how such a transition is possible and why it may be expected with generality, as organisms grow. The origin of this transition lies in the remodeling of the capillary tissue in the vicinity of the growing arteries. This remodeling lays down a prepattern for further venous growth, parallel to the existing arterial pattern. Accounting for the influence of tissue growth, we show that this prepatterned path becomes favored as the body extends. As a consequence, a second flow route with veins paralleling the arteries (cis-trans configuration) emerges when the tissue extends. Between the cis-cis and cis-trans configurations, all configurations are in principle possible, and self-organization of the vessels contributes to determining their exact pattern. However, the global aspect depends on the size at which the growth stops and on the growth rate.


Assuntos
Artérias/embriologia , Artérias/crescimento & desenvolvimento , Modelos Biológicos , Morfogênese/fisiologia , Veias/embriologia , Veias/crescimento & desenvolvimento , Animais , Embrião de Galinha , Simulação por Computador , Retroalimentação/fisiologia
7.
Organogenesis ; 3(1): 49-56, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19279700

RESUMO

We have investigated the microscopic physical inhomogeneity ("texture") of the avian embryo in vivo by shadowgraph. This noninvasive technique allows one to correlate the shape of blood vessels to the physical, micro-structural, pattern that exists in the embryo prior to vessel appearance. Before any vessel forms, vascular paths are present and are prepatterned, by fields of cellular orientations and lumen anisotropies. We find the origin of this prepattern in the movements of the embryo during gastrulation, and the related deformation and force field, which establish both the animal and vascular pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...