Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(7): e112165, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795017

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop. However, how the initial spatially resolved mechanical signal is translated into T4P polarity is incompletely understood. Here, we demonstrate that the two Chp response regulators PilG and PilH enable dynamic cell polarization by antagonistically regulating T4P extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not strictly required for twitching reversals, it becomes activated upon phosphorylation and breaks the local positive feedback mechanism established by PilG, allowing forward-twitching cells to reverse. Chp thus uses a main output response regulator, PilG, to resolve mechanical signals in space and employs a second regulator, PilH, to break and respond when the signal changes. By identifying the molecular functions of two response regulators that dynamically control cell polarization, our work provides a rationale for the diversity of architectures often found in non-canonical chemotaxis systems.


Assuntos
Proteínas de Bactérias , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Fímbrias Bacterianas/fisiologia , Movimento Celular
2.
ACS Synth Biol ; 11(8): 2662-2671, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35881049

RESUMO

Agrobacterium tumefaciens is a plant pathogen commonly repurposed for genetic modification of crops. Despite its versatility, it remains inefficient at transferring DNA to many hosts, including to animal cells. Like many pathogens, physical contact between A. tumefaciens and host cells promotes infection efficacy. Thus, improving the strength and specificity of A. tumefaciens to target cells has the potential for enhancing DNA transfer for biotechnological and therapeutic purposes. Here, we demonstrate a methodology for engineering genetically encoded exogeneous adhesins at the surface of A. tumefaciens. We identified an autotransporter gene we named Aat that is predicted to show canonical ß-barrel and passenger domains. We engineered the ß-barrel scaffold and linker (Aatß) to display synthetic adhesins susceptible to rewire A. tumefaciens to alternative host targets. As a proof of concept, we leveraged the versatility of a VHH domain to rewire A. tumefaciens adhesion to yeast and mammalian hosts displaying a GFP target receptor. Finally, to demonstrate how synthetic A. tumefaciens adhesion can improve transfer to host cells, we showed improved protein translocation into HeLa cells using a sensitive split luciferase reporter system. Engineering A. tumefaciens adhesion has therefore a strong potential in generating complex heterogeneous cellular assemblies and in improving DNA transfer efficiency against non-natural hosts.


Assuntos
Adesinas Bacterianas , Agrobacterium tumefaciens , Adesinas Bacterianas/genética , Agrobacterium tumefaciens/genética , Células HeLa , Humanos , Transporte Proteico
3.
mBio ; 12(4): e0139221, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340544

RESUMO

Pathogen attachment to host tissue is critical in the progress of many infections. Bacteria use adhesion in vivo to stabilize colonization and subsequently regulate the deployment of contact-dependent virulence traits. To specifically target host cells, they decorate themselves with adhesins, proteins that bind to mammalian cell surface receptors. One common assumption is that adhesin-receptor interactions entirely govern bacterial attachment. However, how adhesins engage with their receptors in an in vivo-like context remains unclear, in particular under the influence of a heterogeneous mechanical microenvironment. We here investigate the biophysical processes governing bacterial adhesion to host cells using a tunable adhesin-receptor system. By dynamically visualizing attachment, we found that bacterial adhesion to host cell surface, unlike adhesion to inert surfaces, involves two consecutive steps. Bacteria initially attach to their host without engaging adhesins. This step lasts about 1 min, during which bacteria can easily detach. We found that at this stage, the glycocalyx, a layer of glycosylated proteins and lipids, shields the host cell by keeping adhesins away from their receptor ligand. In a second step, adhesins engage with their target receptors to strengthen attachment for minutes to hours. The active properties of the membrane, endowed by the actin cytoskeleton, strengthen specific adhesion. Altogether, our results demonstrate that adhesin-ligand binding is not the sole regulator of bacterial adhesion. In fact, the host cell's surface mechanical microenvironment mediates the physical interactions between host and bacteria, thereby playing an essential role in the onset of infection. IMPORTANCE Microbial adhesion to host cells is the initial step toward many infections. Despite playing a pivotal role in the onset of disease, we still know little about how bacteria attach in an in vivo-like context. By employing a biophysical approach where we investigated host-microbe physical interactions at the single-cell level, we unexpectedly discovered that bacteria attach to mammalian cell membranes in two successive steps. We found that mechanical factors of the cell microenvironment regulate each of these steps, and even dominate biochemical factors, thereby challenging preconceptions on how pathogens interact with their hosts.


Assuntos
Bactérias/metabolismo , Aderência Bacteriana , Membrana Celular/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Receptores de Superfície Celular/metabolismo , Adesinas Bacterianas/metabolismo , Bactérias/classificação , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Membrana Celular/fisiologia , Microambiente Celular , Escherichia coli/metabolismo , Células HeLa , Humanos , Receptores Imunológicos/metabolismo , Virulência
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301869

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa explores surfaces using twitching motility powered by retractile extracellular filaments called type IV pili (T4P). Single cells twitch by sequential T4P extension, attachment, and retraction. How single cells coordinate T4P to efficiently navigate surfaces remains unclear. We demonstrate that P. aeruginosa actively directs twitching in the direction of mechanical input from T4P in a process called mechanotaxis. The Chp chemotaxis-like system controls the balance of forward and reverse twitching migration of single cells in response to the mechanical signal. Collisions between twitching cells stimulate reversals, but Chp mutants either always or never reverse. As a result, while wild-type cells colonize surfaces uniformly, collision-blind Chp mutants jam, demonstrating a function for mechanosensing in regulating group behavior. On surfaces, Chp senses T4P attachment at one pole, thereby sensing a spatially resolved signal. As a result, the Chp response regulators PilG and PilH control the polarization of the extension motor PilB. PilG stimulates polarization favoring forward migration, while PilH inhibits polarization, inducing reversal. Subcellular segregation of PilG and PilH efficiently orchestrates their antagonistic functions, ultimately enabling rapid reversals upon perturbations. The distinct localization of response regulators establishes a signaling landscape known as local excitation-global inhibition in higher-order organisms, identifying a conserved strategy to transduce spatially resolved signals.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Mecanotransdução Celular , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Movimento Celular , Proteínas de Fímbrias/genética , Transdução de Sinais
5.
Elife ; 92020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33025904

RESUMO

During chronic infections and in microbiota, bacteria predominantly colonize their hosts as multicellular structures called biofilms. A common assumption is that biofilms exclusively interact with their hosts biochemically. However, the contributions of mechanics, while being central to the process of biofilm formation, have been overlooked as a factor influencing host physiology. Specifically, how biofilms form on soft, tissue-like materials remains unknown. Here, we show that biofilms of the pathogens Vibrio cholerae and Pseudomonas aeruginosa can induce large deformations of soft synthetic hydrogels. Biofilms buildup internal mechanical stress as single cells grow within the elastic matrix. By combining mechanical measurements and mutations in matrix components, we found that biofilms deform by buckling, and that adhesion transmits these forces to their substrates. Finally, we demonstrate that V. cholerae biofilms can generate sufficient mechanical stress to deform and even disrupt soft epithelial cell monolayers, suggesting a mechanical mode of infection.


Assuntos
Biofilmes , Interações entre Hospedeiro e Microrganismos , Pseudomonas aeruginosa/fisiologia , Vibrio cholerae/fisiologia , Fenômenos Biomecânicos , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Hidrogéis/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...