Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608983

RESUMO

Chitosan (CTS), has emerged as a highly intriguing biopolymer with widespread applications, drawing significant attention in various fields ranging from medicinal to chemosensing. Key characteristics of chitosan include solubility, biocompatibility, biodegradability and reactivity, making it versatile in numerous sectors. Several derivatives have been documented for their diverse therapeutic properties, such as antibacterial, antifungal, anti-diabetic, anti-inflammatory, anticancer and antioxidant activities. Furthermore, these compounds serve as highly sensitive and selective chemosensor for the detection of various analytes such as heavy metal ions, anions and various other species in agricultural, environmental and biological matrixes. CTS derivatives interacting with these species and give analytical signals. In this review, we embark on an exploration of the latest advancements in CTS-based materials, emphasizing their noteworthy contributions to medicinal chemistry spanning the years from 2021 to 2023. The intrinsic biological and physiological properties of CTS make it an ideal platform for designing materials that interact seamlessly with biological systems. The review also explores the utilization of chitosan-based materials for the development of colorimetric and fluorimetric chemosensors capable of detecting metal ions, anions and various other species, contributing to advancements in environmental monitoring, healthcare diagnostics, and industrial processes.


Assuntos
Quitosana , Quitosana/química , Humanos , Materiais Biocompatíveis/química , Animais
2.
Bioorg Chem ; 141: 106872, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776683

RESUMO

The present study involves the synthesis of a series of new imidazole-2-ones derivatives and their 2-thione analogs using conventional heating and the environmentally friendly benign technique, the microwave technique. Structure of the compounds was well elucidated by considering the data of both elemental and spectral analyses. The obtained data and theoretical values of the synthesized molecules correlated with the proposed molecular structure. Moreover, all the synthesized compounds were evaluated in vitro for antitumor activity against HCT-116 and HeP2 human cancer cell panels and assessed as selective carbonic anhydrase IX isozyme (CA9/CAIX) inhibitors, thereby providing useful preliminary evidence for drug development. In addition, computational techniques were used to investigate the molecular and electronic characteristics of the investigated organic compounds. The 4b compound exhibited the best quantum chemistry features, as the highest occupied molecular orbital, softness, energy gap, and dipole moment, indicating the highest biological activity. This was supported by the experimental findings. Moreover, the in silico evaluation of drug candidates was also investigated. Thereafter, the anticancer activity of the most reactive candidate was studied via molecular docking to determine the types of interactions between this molecule and CAIX. According to the docking experiments, the 4b molecule generates five hydrogen bond interactions with active amino acid residues, Gln 92, Gln 67, and Thr 200.


Assuntos
Antineoplásicos , Tionas , Humanos , Anidrase Carbônica IX , Simulação de Acoplamento Molecular , Tionas/química , Inibidores da Anidrase Carbônica/química , Estrutura Molecular , Antineoplásicos/química , Imidazóis/farmacologia , Relação Estrutura-Atividade
3.
Food Chem ; 411: 135506, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682169

RESUMO

Kasugamycin residues (KASU), a pest control antibiotic, was reported as an ecosystem threat owing to its over-application in plant protection to meet the growing global need for agronomic products. Therefore, we report herein the first electrochemical sensor for fast and sensitive analysis of KASU in vegetables based on the synergetic hybridization between conducting polyserine film (poly (SER)), and carbon nanomaterials including functionalized multiwalled carbon nanotubes (fMWCNTs) and reduced graphene oxide (rGO). The sensor was characterized morphologically using Scanning electron (SEM) and atomic force Microscopy (AFM), while cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for electrochemical characterization. Under the optimized conditions using differential pulse voltammetry (DPV), the sensor exhibited an outstanding sensitivity and selectivity, with a good linear response of 3-106 µg/mL and an assessed limit of detection and quantification of 0.40 and 1.33 µg/mL, respectively. Furthermore, the electrochemical sensor was effectively applied to quantify KASU in cucumber, zucchini, and carrots with a recovery range 95.5-100.1%, and RSD lower than 4.1% (n = 3), showing its applicability and efficiency for selective analysis of KASU in foodstuffs.


Assuntos
Grafite , Nanotubos de Carbono , Limite de Detecção , Verduras , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Ecossistema , Aminoglicosídeos , Antibacterianos , Eletrodos , Grafite/química
4.
Polymers (Basel) ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679158

RESUMO

In recent years, due to the developments in the textile industry, water contaminated with synthetic dyes such as methylene blue (MB) has become an environmental threat based on the possible impacts in terms of chemical and biochemical demand, which leads to disturbance in aquatic plants photosynthesis, besides their possible toxicity and carcinogenicity for humans. In this work, an adsorbent hydrogel is prepared via free radical polymerization comprising acrylic acid (PAA) as a monomer and orange peel (OP) as a natural modifier rich in OH and COOH present in its cellulose and pectin content. The resulting hydrogels were optimized in terms of the content of OP and the number of cross-linkers and characterized morphologically using Scanning electron microscopy. Furthermore, BET analysis was used to follow the variation in the porosity and in terms of the surface area of the modified hydrogel. The adsorption behavior was found to follow pseudo-second-order as a kinetic model, and Langmuir, Freundlich, and Temkin isotherm models. The combination of OP and PAA has sharply enhanced the adsorption percent of the hydrogel to reach 84% at the first 10 min of incubation with an adsorption capacity of more than 1.93 gm/gm. Due to its low value of pHPZc, the desorption of MB was efficiently performed at pH 2 using HCl, and the desorbed OP-PAA were found to be reusable up to ten times without a decrease in their efficiency. Accordingly, OP-PAA hydrogel represents a promising efficient, cost-effective, and environmentally friendly adsorbent for MB as a model cationic dye that can be applied for the treatment of contaminated waters.

5.
RSC Adv ; 12(48): 31192-31204, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349029

RESUMO

The design of nonlinear optical (NLO) materials using conjugated molecules via different techniques is reported in the literature to boost the use of these systems in NLO. Therefore, in the current study, designed phenylene based non-fullerene organic compounds with a D-π-A framework were selected for NLO investigation. The initial compound (PMD-1) was taken as a reference and its seven derivatives (PMDC2-PMDC8) were made by introducing different acceptor moieties into the chemical structure of PMD-1. To explain the NLO findings, frontier molecular orbital (FMO), transition density matrix (TDM), density of states (DOS), natural bond orbital (NBO) and UV-Vis study of the title compounds was executed by applying the PBE1PBE functional with the 6-311G(d,p) basis set. The descending order of band gaps (E gap) was reported as PMDC7 (2.656) > PMDC8 (2.485) > PMD-1 (2.131) > PMDC3 (2.103) > PMDC2 (2.079) > PMDC4 (2.065) > PMDC5 (2.059) > PMDC6 (2.004), in eV. Global reactivity parameters (GRPs) were associated with E gap values as PMDC6 with the lowest band gap showed less hardness (0.0368 E h) and high softness (13.5785 E h). The UV-Vis investigation revealed that the maximum λ max (739.542 nm) was exhibited by PMDC6 in dichloromethane (DCM) as compared to other derivatives. Additionally, natural bond orbital (NBO) based findings revealed that PMDC6 exhibited the highest stability value (34.98 kcal mol-1) because of prolonged hyper-conjugation. The dipole moment (µ), average linear polarizability 〈α〉, first hyperpolarizability (ß tot) and second hyperpolarizability (γ tot) were evaluated for the reference and its derivatives. Consequently, among the designed compounds, the highest ß tot (4.469 × 10-27 esu) and γ tot (5.600 × 10-32 esu) values were shown by PMDC6. Hence, it's concluded from said results that these structural modifications proved PMDC6 as the best second and third order NLO candidate for various applications like fiber optics, signal processing and data storage.

6.
RSC Adv ; 12(50): 32185-32196, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425709

RESUMO

Herein, an integral approach has been made towards the exploration of electronic and structural parameters of four synthesized (DMA with an A-π-A configuration and DMM, DAM, and DMD with a D-π-D configuration) and one designed (DMB-D) novel Schiff base compounds. Bis phenylenediamine derivatives were prepared by condensation of 4,5-dimethyl-o-phenylenediamine (1) with various substituted benzaldehydes (2a-d). The structures of compounds were confirmed by spectroscopic techniques, i.e., UV-visible, FT-IR, and NMR spectroscopy. The DFT-based analysis of entitled compounds was performed via density functional theory utilizing the M06-2X functional in conjugation with the 6-311G(d,p) basis set to acquire geometrical parameters, natural bonding orbital (NBO), the density of states (DOS), non-linear optical (NLO), molecular electrostatic potential (MESP), and natural population analyses. The smallest band gap of (5.446 eV) was noted for DMAvia frontier molecular orbital (FMO) analysis. GRPs were obtained with the aid of E gap values as DMA with the lowest band gap displayed a small magnitude of hardness (2.723 eV) and a large magnitude of softness (0.183 eV). The ß tot values of DMA, DMM, DMB-D, DAM, and DMD were 56.95, 0.43, 2.53, 8.98, and 68.47 times larger than urea (ß tot = 3.71 × 10-31 e.s.u.), respectively. The observed fascinating NLO properties of these novel compounds might be helpful for further advancement in non-linear optics.

7.
RSC Adv ; 13(1): 464-477, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605672

RESUMO

In the present study, we reported the efficient synthesis of novel, heterocyclic, coumarin-based pyrano-chromene derivatives, 2-amino-8-methyl-5-oxo-4-[2-(2-oxo-2H-chromen-3-ylmethoxy)-phenyl]-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (4a) and 2-amino-8-methyl-5-oxo-4-[2-(2-oxo-2H-chromen-3-ylmethoxy)-phenyl]-4H,5H-pyrano[3,2-c]chromene-3-carboxylic acid methyl ester (4b). The chemical structures of synthesized compounds were resolved by employing various spectroscopic techniques like UV-Vis, FT-IR, 1H & 13C NMR, and single crystal X-ray diffraction (SC-XRD) analysis. The compounds; 4a and 4b, with appealing π-bonded skeleton were further analyzed in terms of their electronic and structural aspects using an integral approach of density functional theory (DFT) and time-dependent DFT (TD/DFT). The methodology: M06-2X/6-31G(d,p) level of theory was applied to compare their experimental data with theoretical outcomes using quantum chemical analysis. The frontier molecular orbitals (FMOs) study revealed that, 4a possesses a low band gap (5.168 eV) as compared to 4b (6.308 eV). Global reactivity parameters were associated with E gap values as 4a, with the lowest band gap showed the smaller value of hardness (0.094 eV) and a larger value of softness (5.266 eV). The non-linear optical (NLO) insight exhibited that, the average polarizability 〈α〉 and second hyperpolarizability (γ tot) were observed in 4a as 6.77005 × 10-23 and 0.145 × 104 esu, respectively. Overall, the computational studies suggest that the investigated compounds have distinct NLO properties.

8.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833279

RESUMO

This work demonstrates a facile electropolymerization of a dl-methionine (dl-met) conducting polymeric film on a gold nanoparticle (AuNPs)-modified glassy carbon electrode (GCE). The resulting sensor was successfully applied for the sensitive detection of paroxetine·HCl (PRX), a selective serotonin (5-HT) reuptake inhibitor (SSRIs), in its pharmaceutical formulations. The sensor was characterized morphologically using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) and electrochemical techniques such as differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed sensor, poly (dl-met)/AuNPs-GCE, exhibited a linear response range from 5 × 10-11 to 5 × 10-8 M and from 5 × 10-8 to 1 × 10-4 M using DPV with lowest limit of detection (LOD = 1 × 10-11 M) based on (S/N = 3). The poly (dl-met)/AuNPs-GCE sensor was successfully applied for PRX determination in three different pharmaceutical formulations with percent recoveries between 96.29% and 103.40% ± SD (±0.02 and ±0.58, respectively).

9.
Membranes (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34832085

RESUMO

This research studied the enhancing effect on the nanofiltration composite (TFCNF) membrane of two non-ionic surfactants on a thin-film composite nanofiltration membrane (TFCNF) for calcite scale (CaCO3) inhibition in oilfield application to develop a multifunctional filtration system: nanofiltration, antiscalant, and scale inhibitors. The effectiveness of dodecyl phenol ethoxylate (DPE) and oleic acid ethoxylate (OAE) as novel scale inhibitors were studied using the dynamic method. Scaling tests on the membrane were performed to measure the scaling of the inhibited membrane with and without scale inhibitors for salt rejection, permeability, and flux decline. The results revealed that the TFCNF membrane flux decline was improved in the presence of scale inhibitors from 22% to about 15%. The rejection of the membrane scales increases from 72% for blank membranes, reaching 97.2% and 88% for both DPE and OAE, respectively. These confirmed that scale inhibitor DPE had superior anti-scaling properties against calcite deposits on TFCNF membranes. Inhibited scaled TFCNF membrane was characterized using environmental scanning electron (ESEM), FTIR, and XRD techniques. The results of the prepared TFCNF membrane extensively scaled by the calcite deposits were correlated to its morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...