Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678907

RESUMO

This study designed a two-stage, electrode-integrated septic tank-floating wetland system and assessed their pollutant removal performances under variable operational conditions. The two-stage system achieved mean organic, nitrogen, phosphorus, and coliform removal percentages of 99, 78, 99, and 97%, respectively, throughout the experimental run. The mean metals (chromium, cadmium, nickel, copper, zinc, lead, iron, and manganese) removal percentages ranged between 81 and 98%. Accumulated sludge, filler media, and the hanging root mass contributed to pollutant removals by supporting physicochemical and biological pathways. The mean effluent organic concentration and coliform number across the two-stage system were 20 mg/L and 1682 CFU/100 mL, respectively, during the closed-circuit protocol, which was beneath the open-circuit-based performance profiles, i.e., 32 mg/L and 2860 CFU/100 mL, respectively. Effluent organic, nitrogen, phosphorus, metals, and coliform number ranges across the two-stage system were 9-17 mg/L, 13-24 mg/L, 1-1.5 mg/L, 0.001-0.2 mg/L, and 1410-2270 CFU/100 mL, respectively during intermittent and continuous aeration periods. The air supply rate differences influenced pollutant removal depending on the associated removal mechanisms. The non-aeration phase produced higher effluent pollutant concentrations than the aeration periods-based profiles. The overall mean power density production of the septic tank ranged between 107 and 596 mW/m3; 110 and 355 mW/m3 with the floating wetland. The bioenergy production capacity of the septic tank was positively correlated to external air supply rates. This study demonstrates the potential application of the novel bioenergy-producing septic tank-floating wetland system for wastewater treatment in decentralized areas.


Assuntos
Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Esgotos
2.
Sci Total Environ ; 892: 164558, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37270017

RESUMO

This study reports the performance of non-aerated and aerated unplanted, planted, microbial fuel cell planted wetlands for stabilizing septage and treating the drained wastewater. The wetland systems of this study were dosed with septage for a relatively shorter period, i.e., 20 weeks, followed by 60 days of sludge drying period. The sludge loading rates across the constructed wetlands ranged between 259 and 624 kg total solids (TS)/m2 per year. Organic matter, nitrogen, and phosphorus concentration of the residual sludge ranged between 8512 and 66,374 mg/kg, 12,950 and 14,050 mg/kg, 4979 and 9129 mg/kg, respectively. The presence of plants, electrode, and aeration improved sludge dewatering and decreased the organic matter and nutrient concentration of the residual sludge. The heavy metals (Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn) concentration of the residual sludge fulfilled the guidelines for agricultural reuse in Bangladesh. Chemical oxygen demand (COD), ammoniacal nitrogen (NH4-N), total nitrogen (TN), total phosphorus (TP), and coliform removal percentages from the drained wastewater ranged between 91 and 93 %, 88 and 98 %, 90 and 99 %, 92 and 100 %, and 75 and 90 %, respectively. NH4-N removal from the drained wastewater depended upon aeration. The sludge treatment wetlands achieved metals removal percentages (from the drained wastewater) ranging between 90 and 99 %. Physicochemical and microbial routes in accumulated sludge, rhizosphere, and media contributed to pollutants removal. Input load and organic removal increment (from the drained wastewater) were positively correlated; nutrient removal showed a contradictory trend. The non-aerated and aerated microbial fuel cell planted wetlands produced maximum power densities ranging between 66 and 3417 mW/m3. Because of the shorter experimental duration, this study revealed preliminary but new information on the macro and micro pollutants removal pathways in septage sludge wetlands (with and without electrode) that could be utilized to design pilot or full-scale systems.


Assuntos
Poluentes Ambientais , Águas Residuárias , Esgotos , Eliminação de Resíduos Líquidos , Áreas Alagadas , Poluentes Ambientais/metabolismo , Plantas/metabolismo , Nitrogênio/análise , Fósforo/análise , Eletrodos , Análise da Demanda Biológica de Oxigênio
3.
J Environ Sci (China) ; 26(4): 726-36, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079402

RESUMO

This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD/(m(2)·day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efficiencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation.


Assuntos
Poluentes da Água/isolamento & purificação , Purificação da Água , Áreas Alagadas , Escherichia coli/isolamento & purificação , Nitrogênio/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA