Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202301786, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587989

RESUMO

In this study, a cost-effective and stable heterogeneous acidic carbocatalyst (CZnLS950) derived from Na-lignosulfonate (LS), a side product of the paper industry, was employed to produce hydrocarbon fuels through the pyrolysis of waste cooking oil (WCO) and crude natural-oil extracted from sunflower seeds, aligning with the principles of the circular economy. To enhance its practicality in industrial settings, the catalyst was synthesized in pellet form, enabling easy separation from the biofuel produced during the reaction. CZnLS950 exhibited remarkable catalytic efficiency in the pyrolysis of WCO, resulting in a 71 wt. % liquid biofuel yield under mild conditions. This performance is attributed to the unique synthesis procedure of acidic carbocatalyst, which utilizes LS and nano ZnO (20 nm) to create a hierarchical pore structure with acidic properties (1.1 mmol of NH3 g-1). Stability and reusability of the carbocatalyst were evaluated, and the results showed excellent stability with small catalytic deactivation (~5 wt. %) after the fourth use. Attempts at distinct catalytic mechanisms for WCO and sunflower seeds crude natural-oil pyrolysis were provided to understand the processes involved in obtaining the two different biofuels produced. Overall, this study sets the stage for exploring Lignosulfonate-based materials to achieve renewable biofuel from recycling streams.

2.
J Mater Chem A Mater ; 11(3): 1439-1446, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36761436

RESUMO

Sustainable, high-performance carbonaceous anode materials are highly required to bring sodium-ion batteries to a more competitive level. Here, we exploit our expertise to control the deposition of a nm-sized conformal coating of carbon nitride with tunable thickness to improve the electrochemical performance of anode material derived from sodium lignosulfonate. In this way, we significantly enhanced the electrochemical performances of the electrode, such as the first cycle efficiency, rate-capability, and specific capacity. In particular, with a 10 nm homogeneous carbon nitride coating, the specific capacity is extended by more than 30% with respect to the bare carbon material with an extended plateau capacity, which we attribute to a heterojunction effect at the materials' interface. Eventually, the design of (inter)active electrochemical interfaces will be a key step to improve the performance of carbonaceous anodes with a negligible increase in the material weight.

3.
ChemSusChem ; 16(9): e202201991, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36637905

RESUMO

Careless release of plastic waste is a pressing problem for marine and other eco-environments, and materials recycling of this stream is an open problem. For this purpose, a new metal-free acidic carbocatalyst with 8 wt % sulfur is constructed from a side product of the paper industry namely Na-lignosulfonate. The catalyst shows an extraordinary performance for the fragmentation of polymer waste which smoothly occurs above the ceiling temperature of the polymers. The reaction is run without hydrogen and at ambient pressure with commercially available high-density polyethylene (HDPE) as well as a real polymer waste mixture of high and low-density polyethylene (HDPE, LDPE). In all cases, a homologous series of n-alkanes and n-alkenes are obtained. The unique sulfur-rich carbonaceous structure (transfer hydrogenation functionality) and the metal-free character of the acidic carbocatalyst makes it inert against many typical catalyst poisons, among them water, salt, polar functionalities, and sulfur species. The described performance in plastic recycling, as well as the low cost and large-scale availability of lignosulfonate from the pulp industry, makes this metal-free acidic carbocatalyst promising for real-life environmental applications.

4.
ChemSusChem ; 15(5): e202102525, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34931452

RESUMO

Isosorbide is one of the most interesting cellulosic-derived molecules with great potential to be implemented in wide range of products that shaping our daily life. This Review describes the recent developments in the production of isosorbide from sorbitol in batch and continuous-flow systems under hydrothermal conditions using solid acid catalysts. Moreover, the current hurdles and challenges regarding the synthesis of isosorbide from cellulosic biomass in continuous-flow process using solid acid catalysts are summarized, as well as the scaling-up of this process into pilot level, which will lead to an established industrial process with high sustainability metrics.


Assuntos
Isossorbida , Sorbitol , Biomassa , Catálise , Desidratação , Humanos
5.
RSC Adv ; 11(26): 15835-15840, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35481198

RESUMO

Biorefinery seeks to utilize biomass waste streams as a source of chemical precursors with which to feed the chemical industry. This goal seeks to replace petroleum as the main feedstock, however this task requires the development of efficient catalysts capable of transforming substances derived from biomass into useful chemical products. In this study, we demonstrate that a highly-active iridium complex can be solid-supported and used as a low-temperature catalyst for both the decomposition of formic acid (FA) to produce hydrogen, and as a hydrogenation catalyst to produce vanillyl alcohol (VA) and 2-methoxy-4-methylphenol (MMP) from vanillin (V); a lignin-derived feedstock. These hydrogenation products are promising precursors for epoxy resins and thus demonstrate an approach for their production without the need for petroleum. In contrast to other catalysts that require temperatures exceeding 100 °C, here we accomplish this at a temperature of <50 °C in water under autogenous pressure. This approach provides an avenue towards biorefinery with lower energy demands, which is central to the decentralization and broad implementation. We found that the high activity of the iridium complex transfers to the solid-support and is capable of accelerating the rate determining step; the decomposition of FA into hydrogen and carbon dioxide. The yield of both VA and MMP can be independently tuned depending on the temperature. The simplicity of this approach expands the utility of molecular metal complexes and provides new catalyst opportunities in biorefinery.

6.
Macromol Rapid Commun ; 42(3): e2000485, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33205563

RESUMO

This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., α-methylene-γ-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers.


Assuntos
Ácido Láctico , Lignina , Biomassa , Catálise , Polímeros
7.
ChemSusChem ; 12(12): 2628-2636, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30994965

RESUMO

The need for more sustainable products and processes has led to the use of new methodologies with low carbon footprints. In this work, an efficient tandem process is demonstrated for the liquid-phase catalytic upgrading of lignocellulosic biomass-derived γ-valerolactone (GVL) with trioxane (Tx) to α-methylene-γ-valerolactone (MeGVL) in flow system using Cs-loaded hierarchical beta zeolites. The introduction of mesopores along with the presence of basic sites of mild strength leads to MeGVL productivity 20 times higher than with the bulk beta zeolite, reaching 0.325 mmol min-1 gcat -1 for the best-performing catalyst, the highest value reported so far. This catalyst proves stable upon reuse in consecutive cycles, which is ascribed to the partial depletion of the basic sites. The obtained MeGVL is subjected to visible-light-induced polymerization, resulting in a final material with similar properties to the widely used poly(methyl) methacrylate.

8.
Dalton Trans ; 45(38): 14883-7, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27604131

RESUMO

Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...