Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 201(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249705

RESUMO

We used comparative genomics to reconstruct d-galacturonic and d-glucuronic acid catabolic pathways and associated transcriptional regulons involving the tripartite ATP-independent periplasmic (TRAP) family transporters that bind hexuronates in proteobacteria. The reconstructed catabolic network involves novel transcription factors, catabolic enzymes, and transporters for utilization of both hexuronates and aldarates (d-glucarate and meso-galactarate). The reconstructed regulons for a novel GntR family transcription factor, GguR, include the majority of hexuronate/aldarate utilization genes in 47 species from the Burkholderiaceae, Comamonadaceae, Halomonadaceae, and Pseudomonadaceae families. GudR, GulR, and UdhR are additional local regulators of some hexuronate/aldarate utilization genes in some of the above-mentioned organisms. The predicted DNA binding motifs of GguR and GudR regulators from Ralstonia pickettii and Polaromonas were validated by in vitro binding assays. Genes from the GulR- and GguR-controlled loci were differentially expressed in R. pickettii grown on hexuronates and aldarates. By a combination of bioinformatics and experimental techniques we identified a novel variant of the oxidative pathway for hexuronate utilization, including two previously uncharacterized subfamilies of lactone hydrolases (UxuL and UxuF). The genomic context of respective genes and reconstruction of associated pathways suggest that both enzymes catalyze the conversion of d-galactaro- and d-glucaro-1,5-lactones to the ring-opened aldarates. The activities of the purified recombinant enzymes, UxuL and UxuF, from four proteobacterial species were directly confirmed and kinetically characterized. The inferred novel aldarate-specific transporter from the tripartite tricarboxylate transporter (TTT) family transporter TctC was confirmed to bind d-glucarate in vitro This study expands our knowledge of bacterial carbohydrate catabolic pathways by identifying novel families of catabolic enzymes, transcriptional regulators, and transporters.IMPORTANCE Hexuronate catabolic pathways and their transcriptional networks are highly variable among different bacteria. We identified novel transcriptional regulators that control the hexuronate and aldarate utilization genes in four families of proteobacteria. By regulon reconstruction and genome context analysis we identified several novel components of the common hexuronate/aldarate utilization pathways, including novel uptake transporters and catabolic enzymes. Two novel families of lactonases involved in the oxidative pathway of hexuronate catabolism were characterized. Novel transcriptional regulons were validated via in vitro binding assays and gene expression studies with Polaromonas and Ralstonia species. The reconstructed catabolic pathways are interconnected with each other metabolically and coregulated via the GguR regulons in proteobacteria.


Assuntos
Biologia Computacional/métodos , Ácidos Hexurônicos/metabolismo , Redes e Vias Metabólicas/genética , Proteobactérias/genética , Proteobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genômica , Regulon , Transcrição Gênica
2.
Elife ; 72018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29377793

RESUMO

The functions of most proteins are yet to be determined. The function of an enzyme is often defined by its interacting partners, including its substrate and product, and its role in larger metabolic networks. Here, we describe a computational method that predicts the functions of orphan enzymes by organizing them into a linear metabolic pathway. Given candidate enzyme and metabolite pathway members, this aim is achieved by finding those pathways that satisfy structural and network restraints implied by varied input information, including that from virtual screening, chemoinformatics, genomic context analysis, and ligand -binding experiments. We demonstrate this integrative pathway mapping method by predicting the L-gulonate catabolic pathway in Haemophilus influenzae Rd KW20. The prediction was subsequently validated experimentally by enzymology, crystallography, and metabolomics. Integrative pathway mapping by satisfaction of structural and network restraints is extensible to molecular networks in general and thus formally bridges the gap between structural biology and systems biology.


Assuntos
Biologia Computacional/métodos , Enzimas/genética , Enzimas/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Redes e Vias Metabólicas/genética , Biologia de Sistemas/métodos
3.
Proc Natl Acad Sci U S A ; 113(29): E4161-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27402745

RESUMO

Using a large-scale "genomic enzymology" approach, we (i) assigned novel ATP-dependent four-carbon acid sugar kinase functions to members of the DUF1537 protein family (domain of unknown function; Pfam families PF07005 and PF17042) and (ii) discovered novel catabolic pathways for d-threonate, l-threonate, and d-erythronate. The experimentally determined ligand specificities of several solute binding proteins (SBPs) for TRAP (tripartite ATP-independent permease) transporters for four-carbon acids, including d-erythronate and l-erythronate, were used to constrain the substrates for the catabolic pathways that degrade the SBP ligands to intermediates in central carbon metabolism. Sequence similarity networks and genome neighborhood networks were used to identify the enzyme components of the pathways. Conserved genome neighborhoods encoded SBPs as well as permease components of the TRAP transporters, members of the DUF1537 family, and a member of the 4-hydroxy-l-threonine 4-phosphate dehydrogenase (PdxA) oxidative decarboxylase, class II aldolase, or ribulose 1,5-bisphosphate carboxylase/oxygenase, large subunit (RuBisCO) superfamily. Because the characterized substrates of members of the PdxA, class II aldolase, and RuBisCO superfamilies are phosphorylated, we postulated that the members of the DUF1537 family are novel ATP-dependent kinases that participate in catabolic pathways for four-carbon acid sugars. We determined that (i) the DUF1537/PdxA pair participates in a pathway for the conversion of d-threonate to dihydroxyacetone phosphate and CO2 and (ii) the DUF1537/class II aldolase pair participates in pathways for the conversion of d-erythronate and l-threonate (epimers at carbon-3) to dihydroxyacetone phosphate and CO2 The physiological importance of these pathways was demonstrated in vivo by phenotypic and genetic analyses.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Bactérias/enzimologia , Bactérias/isolamento & purificação , Butiratos/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Oxirredutases/metabolismo , Fosfatos/metabolismo , Domínios Proteicos
4.
Proc Natl Acad Sci U S A ; 112(16): E1974-83, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848029

RESUMO

Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.


Assuntos
Família Multigênica , Monoéster Fosfórico Hidrolases/metabolismo , Ensaios de Triagem em Larga Escala , Cinética , Reprodutibilidade dos Testes , Especificidade por Substrato
5.
Biochemistry ; 54(2): 528-37, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25513739

RESUMO

Enzyme function prediction remains an important open problem. Though structure-based modeling, such as metabolite docking, can identify substrates of some enzymes, it is ill-suited to reactions that progress through a covalent intermediate. Here we investigated the ability of covalent docking to identify substrates that pass through such a covalent intermediate, focusing particularly on the haloalkanoate dehalogenase superfamily. In retrospective assessments, covalent docking recapitulated substrate binding modes of known cocrystal structures and identified experimental substrates from a set of putative phosphorylated metabolites. In comparison, noncovalent docking of high-energy intermediates yielded nonproductive poses. In prospective predictions against seven enzymes, a substrate was identified for five. For one of those cases, a covalent docking prediction, confirmed by empirical screening, and combined with genomic context analysis, suggested the identity of the enzyme that catalyzes the orphan phosphatase reaction in the riboflavin biosynthetic pathway of Bacteroides.


Assuntos
Simulação de Acoplamento Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Bases de Dados de Proteínas , Humanos , Ligantes , Especificidade por Substrato
6.
Nature ; 498(7452): 123-6, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23676670

RESUMO

The identification of novel metabolites and the characterization of their biological functions are major challenges in biology. X-ray crystallography can reveal unanticipated ligands that persist through purification and crystallization. These adventitious protein-ligand complexes provide insights into new activities, pathways and regulatory mechanisms. We describe a new metabolite, carboxy-S-adenosyl-l-methionine (Cx-SAM), its biosynthetic pathway and its role in transfer RNA modification. The structure of CmoA, a member of the SAM-dependent methyltransferase superfamily, revealed a ligand consistent with Cx-SAM in the catalytic site. Mechanistic analyses showed an unprecedented role for prephenate as the carboxyl donor and the involvement of a unique ylide intermediate as the carboxyl acceptor in the CmoA-mediated conversion of SAM to Cx-SAM. A second member of the SAM-dependent methyltransferase superfamily, CmoB, recognizes Cx-SAM and acts as a carboxymethyltransferase to convert 5-hydroxyuridine into 5-oxyacetyl uridine at the wobble position of multiple tRNAs in Gram-negative bacteria, resulting in expanded codon-recognition properties. CmoA and CmoB represent the first documented synthase and transferase for Cx-SAM. These findings reveal new functional diversity in the SAM-dependent methyltransferase superfamily and expand the metabolic and biological contributions of SAM-based biochemistry. These discoveries highlight the value of structural genomics approaches in identifying ligands within the context of their physiologically relevant macromolecular binding partners, and in revealing their functions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Metiltransferases/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Biocatálise , Vias Biossintéticas , Domínio Catalítico , Cristalografia por Raios X , Ácidos Cicloexanocarboxílicos/metabolismo , Cicloexenos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ligantes , Metiltransferases/deficiência , Metiltransferases/genética , Modelos Moleculares , Peso Molecular , Transferases de Grupo de Um Carbono/química , Multimerização Proteica , Estrutura Secundária de Proteína , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química , S-Adenosilmetionina/biossíntese , Uridina/análogos & derivados , Uridina/química , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...