Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; 129(5): 1240-1248, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29350599

RESUMO

In patients with postoperative residual atypical meningiomas, by using volumetric instead of linear measurements in follow-up imaging studies, the authors detected disease progression earlier. By using this approach, treatment for recurrent disease can be instituted promptly with potentially better tumor control and less toxicity due to smaller volume of residual disease.


Assuntos
Neoplasias Meníngeas/patologia , Meningioma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Pessoa de Meia-Idade , Prognóstico , Intervalo Livre de Progressão , Estudos Retrospectivos , Resultado do Tratamento
2.
Cell Signal ; 42: 1-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28988968

RESUMO

The invasive and metastatic phenotypes of breast cancer correlate with high recurrence rates and poor survival outcomes. Transforming growth factor-ß (TGFß) promotes tumor progression and metastasis in aggressive breast cancer. Here, we identified the kisspeptin KiSS1 as a downstream target of canonical TGFß/Smad2 pathway in triple negative breast cancer cells. We also found KiSS1 expression to be required for TGFß-induced cancer cell invasion. Indeed, knockdown expression of KiSS1 blocked TGFß-mediated cancer cell invasion as well as metalloproteinase (MMP9) expression and activity. Interestingly, Kisspeptin-10 (KP-10), the smallest active form of kisspeptin also stimulates cancer cell invasive behavior through activation of MAPK/Erk pathway. We described a positive feedback loop between KiSS1 and p21 downstream of TGFß, further contributing to TGFß-induced cancer cell invasion. Lastly, we explored both the clinical utility of KiSS1 as a lymph node involvement predictive tool and its potential as a therapeutic target. We found KiSS1 high expression to correlate with lymph node positive status. Furthermore, blocking KiSS1 using a specific small peptide antagonist (p234) impaired TGFß-mediated cell invasion and MMP9 induction. Together, our results define an essential role of KiSS1 in regulating TGFß pro-invasive effects and define KiSS1 as a therapeutic new target for triple negative breast cancer.


Assuntos
Adenocarcinoma/genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Kisspeptinas/genética , Fator de Crescimento Transformador beta/genética , Neoplasias de Mama Triplo Negativas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Kisspeptinas/antagonistas & inibidores , Kisspeptinas/metabolismo , Kisspeptinas/farmacologia , Metástase Linfática , Células MCF-7 , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Breast Cancer Res ; 15(3): R49, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23786849

RESUMO

INTRODUCTION: Deregulation of the cell cycle machinery is often found in human cancers. Modulations in the cell cycle regulator function and expression result not only in proliferative advantages, but also lead to tumor progression and invasiveness of the cancer. In particular, cyclin D1 and p21 are often over-expressed in human cancers, correlating with high tumor grade, poor prognosis and increased metastasis. This prompted us to investigate the role of the cyclin D1/p21 signaling axis downstream of transforming growth factor beta (TGFß) in breast cancer progression. METHODS: Cyclins mRNA and protein expressions were assessed by quantitative real-time PCR and Western blot in triple negative breast cancer cell lines. Co-localization and interaction between cyclin D1 and p21 were performed by immunocytochemistry and co-immunoprecipitation, respectively. Cell migration was assessed by wound healing and quantitative time-lapse imaging assays. In addition, the effects of cyclin D1 on cellular structure and actin organization were examined by staining with F-actin marker phalloidin and mesenchymal intermediate filament vimentin. Finally, a mammary fat pad xenograft mouse model was used to assess mammary tumor growth and local invasion. RESULTS: We found TGFß to specifically up-regulate the expression of cyclin D1 in triple negative breast cancer cells. Induction of cyclin D1 is also required for TGFß-mediated cell migration. Suppression of cyclin D1 expression not only resulted in a rounded and epithelial-like phenotype, but also prevented TGFß-induced vimentin and F-actin co-localization at the cell edge as well as invadopodia formation. Furthermore, TGFß promoted the nuclear co-localization and physical interaction between cyclin D1 and p21. The co-expression of cyclin D1 and p21 proteins are required for the initial steps of tumor development, as double knockdown of these two molecules prevented primary tumor formation in a Xenograft mouse model. Moreover, the in vivo studies indicated that locally advanced features of the invasive tumors, including skeletal muscle, mammary fat pad and lymphovascular invasion, as well as ulcerated skin, were attenuated in the absence of cyclin D1 and p21. CONCLUSIONS: Thus, our findings highlight the cyclin D1/p21 signaling axis as a critical regulator of TGFß-mediated tumor growth initiation and local tumor cell invasion, both in vitro and in vivo.


Assuntos
Ciclina D1/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Fator de Crescimento Transformador beta/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Breast Cancer Res ; 14(5): R127, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22995475

RESUMO

INTRODUCTION: Tumor cell migration and invasion are critical initiation steps in the process of breast cancer metastasis, the primary cause of breast cancer morbidity and death. Here we investigated the role of p21Cip1 (p21), a member of the core cell cycle machinery, in transforming growth factor-beta (TGFß)-mediated breast cancer cell migration and invasion. METHODS: A mammary fat pad xenograft mouse model was used to assess the mammary tumor growth and local invasion. The triple negative human breast cancer cell lines MDA-MB231 and its sub-progenies SCP2 and SCP25, SUM159PT, SUM149PT, SUM229PE and SUM1315MO2 were treated with 5 ng/ml TGFß and the protein expression levels were measured by Western blot. Cell migration and invasion were examined using the scratch/wound healing and Transwell assay. TGFß transcriptional activity was measured by a TGFß/Smad reporter construct (CAGA12-luc) using luciferase assay. q-PCR was used for assessing TGFß downstream target genes. The interactions among p21, p/CAF and Smad3 were performed by co-immunoprecipitation. In addition, Smad3 on DNA binding ability was measured by DNA immunoprecipitation using biotinylated Smad binding element DNA probes. Finally, the association among active TGFß/Smad signaling, p21 and p/CAF with lymph node metastasis was examined by immunohistochemistry in tissue microarray containing 50 invasive ductal breast tumors, 25 of which are lymph node positive. RESULTS: We found p21 expression to correlate with poor overall and distant metastasis free survival in breast cancer patients. Furthermore, using xenograft animal models and in vitro studies, we found p21 to be essential for tumor cell invasion. The invasive effects of p21 were found to correlate with Smad3, and p/CAF interaction downstream of TGFß. p21 and p/CAF regulates TGFß-mediated transcription of pro-metastatic genes by controlling Smad3 acetylation, DNA binding and transcriptional activity. In addition, we found that active TGFß/Smad signaling correlates with high p21 and p/CAF expression levels and lymph node involvement using tissue microarrays from breast cancer patients. CONCLUSIONS: Together these results highlight an important role for p21 and p/CAF in promoting breast cancer cell migration and invasion at the transcriptional level and may open new avenues for breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Metástase Linfática , Camundongos , Invasividade Neoplásica , Prognóstico , Proteína Smad3/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...