Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Eng Sci Med ; 46(4): 1519-1534, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603133

RESUMO

Brain-computer interfaces (BCIs) based on motor imagery (MI) face challenges due to the complex nature of brain activity, nonstationary and high-dimensional properties, and individual variations in motor behaviour. The identification of a consistent "golden subject" in MI-based BCIs remains an open challenge, complicated by multiple evaluation metrics and conflicting trade-offs, presenting complex Multi-Criteria Decision Making (MCDM) problems. This study proposes a hybrid brain signal decoding model called Hybrid Adaboost Feature Learner (HAFL), which combines feature extraction and classification using VGG-19, STFT, and Adaboost classifier. The model is validated using a pre-recorded MI-EEG dataset from the BCI competition at Graz University. The fuzzy decision-making framework is integrated with HAFL to allocate a golden subject for MI-BCI applications through the Golden Subject Decision Matrix (GSDM) and the Fuzzy Decision by Opinion Score Method (FDOSM). The effectiveness of the HAFL model in addressing inter-subject variability in EEG-based MI-BCI is evaluated using an MI-EEG dataset involving nine subjects. Comparing subject performance fairly is challenging due to complexity variations, but the FDOSM method provides valuable insights. Through FDOSM-based External Group Aggregation (EGA), subject S5 achieves the highest score of 2.900, identified as the most promising golden subject for subject-to-subject transfer learning. The proposed methodology is compared against other benchmark studies from various key perspectives and exhibits significant novelty in several aspects. The findings contribute to the development of more robust and effective BCI systems, paving the way for advancements in subject-to-subject transfer learning for BCI-MI applications.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Imaginação , Imagens, Psicoterapia , Aprendizagem
2.
Int J Telemed Appl ; 2023: 7741735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168809

RESUMO

The significance of deep learning techniques in relation to steady-state visually evoked potential- (SSVEP-) based brain-computer interface (BCI) applications is assessed through a systematic review. Three reliable databases, PubMed, ScienceDirect, and IEEE, were considered to gather relevant scientific and theoretical articles. Initially, 125 papers were found between 2010 and 2021 related to this integrated research field. After the filtering process, only 30 articles were identified and classified into five categories based on their type of deep learning methods. The first category, convolutional neural network (CNN), accounts for 70% (n = 21/30). The second category, recurrent neural network (RNN), accounts for 10% (n = 3/30). The third and fourth categories, deep neural network (DNN) and long short-term memory (LSTM), account for 6% (n = 30). The fifth category, restricted Boltzmann machine (RBM), accounts for 3% (n = 1/30). The literature's findings in terms of the main aspects identified in existing applications of deep learning pattern recognition techniques in SSVEP-based BCI, such as feature extraction, classification, activation functions, validation methods, and achieved classification accuracies, are examined. A comprehensive mapping analysis was also conducted, which identified six categories. Current challenges of ensuring trustworthy deep learning in SSVEP-based BCI applications were discussed, and recommendations were provided to researchers and developers. The study critically reviews the current unsolved issues of SSVEP-based BCI applications in terms of development challenges based on deep learning techniques and selection challenges based on multicriteria decision-making (MCDM). A trust proposal solution is presented with three methodology phases for evaluating and benchmarking SSVEP-based BCI applications using fuzzy decision-making techniques. Valuable insights and recommendations for researchers and developers in the SSVEP-based BCI and deep learning are provided.

3.
Comput Biol Med ; 138: 104878, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592585

RESUMO

During the coronavirus disease (COVID-19) pandemic, different technologies, including telehealth, are maximised to mitigate the risks and consequences of the disease. Telehealth has been widely utilised because of its usability and safety in providing healthcare services during the COVID-19 pandemic. However, a systematic literature review which provides extensive evidence on the impact of COVID-19 through telehealth and which covers multiple directions in a large-scale research remains lacking. This study aims to review telehealth literature comprehensively since the pandemic started. It also aims to map the research landscape into a coherent taxonomy and characterise this emerging field in terms of motivations, open challenges and recommendations. Articles related to telehealth during the COVID-19 pandemic were systematically searched in the WOS, IEEE, Science Direct, Springer and Scopus databases. The final set included (n = 86) articles discussing telehealth applications with respect to (i) control (n = 25), (ii) technology (n = 14) and (iii) medical procedure (n = 47). Since the beginning of the pandemic, telehealth has been presented in diverse cases. However, it still warrants further attention. Regardless of category, the articles focused on the challenges which hinder the maximisation of telehealth in such times and how to address them. With the rapid increase in the utilization of telehealth in different specialised hospitals and clinics, a potential framework which reflects the authors' implications of the future application and opportunities of telehealth has been established. This article improves our understanding and reveals the full potential of telehealth during these difficult times and beyond.


Assuntos
COVID-19 , Telemedicina , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
4.
J Infect Public Health ; 13(10): 1381-1396, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32646771

RESUMO

This study presents a systematic review of artificial intelligence (AI) techniques used in the detection and classification of coronavirus disease 2019 (COVID-19) medical images in terms of evaluation and benchmarking. Five reliable databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus were used to obtain relevant studies of the given topic. Several filtering and scanning stages were performed according to the inclusion/exclusion criteria to screen the 36 studies obtained; however, only 11 studies met the criteria. Taxonomy was performed, and the 11 studies were classified on the basis of two categories, namely, review and research studies. Then, a deep analysis and critical review were performed to highlight the challenges and critical gaps outlined in the academic literature of the given subject. Results showed that no relevant study evaluated and benchmarked AI techniques utilised in classification tasks (i.e. binary, multi-class, multi-labelled and hierarchical classifications) of COVID-19 medical images. In case evaluation and benchmarking will be conducted, three future challenges will be encountered, namely, multiple evaluation criteria within each classification task, trade-off amongst criteria and importance of these criteria. According to the discussed future challenges, the process of evaluation and benchmarking AI techniques used in the classification of COVID-19 medical images considered multi-complex attribute problems. Thus, adopting multi-criteria decision analysis (MCDA) is an essential and effective approach to tackle the problem complexity. Moreover, this study proposes a detailed methodology for the evaluation and benchmarking of AI techniques used in all classification tasks of COVID-19 medical images as future directions; such methodology is presented on the basis of three sequential phases. Firstly, the identification procedure for the construction of four decision matrices, namely, binary, multi-class, multi-labelled and hierarchical, is presented on the basis of the intersection of evaluation criteria of each classification task and AI classification techniques. Secondly, the development of the MCDA approach for benchmarking AI classification techniques is provided on the basis of the integrated analytic hierarchy process and VlseKriterijumska Optimizacija I Kompromisno Resenje methods. Lastly, objective and subjective validation procedures are described to validate the proposed benchmarking solutions.


Assuntos
Inteligência Artificial/normas , Benchmarking , Infecções por Coronavirus/diagnóstico por imagem , Técnicas de Apoio para a Decisão , Pneumonia Viral/diagnóstico por imagem , Radiografia Torácica/classificação , Tomografia Computadorizada por Raios X/classificação , Betacoronavirus , COVID-19 , Humanos , Pandemias , SARS-CoV-2
5.
Comput Methods Programs Biomed ; 164: 221-237, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29958722

RESUMO

CONTEXT: Intelligent wheelchair technology has recently been utilised to address several mobility problems. Techniques based on brain-computer interface (BCI) are currently used to develop electric wheelchairs. Using human brain control in wheelchairs for people with disability has elicited widespread attention due to its flexibility. OBJECTIVE: This study aims to determine the background of recent studies on wheelchair control based on BCI for disability and map the literature survey into a coherent taxonomy. The study intends to identify the most important aspects in this emerging field as an impetus for using BCI for disability in electric-powered wheelchair (EPW) control, which remains a challenge. The study also attempts to provide recommendations for solving other existing limitations and challenges. METHODS: We systematically searched all articles about EPW control based on BCI for disability in three popular databases: ScienceDirect, IEEE and Web of Science. These databases contain numerous articles that considerably influenced this field and cover most of the relevant theoretical and technical issues. RESULTS: We selected 100 articles on the basis of our inclusion and exclusion criteria. A large set of articles (55) discussed on developing real-time wheelchair control systems based on BCI for disability signals. Another set of articles (25) focused on analysing BCI for disability signals for wheelchair control. The third set of articles (14) considered the simulation of wheelchair control based on BCI for disability signals. Four articles designed a framework for wheelchair control based on BCI for disability signals. Finally, one article reviewed concerns regarding wheelchair control based on BCI for disability signals. DISCUSSION: Since 2007, researchers have pursued the possibility of using BCI for disability in EPW control through different approaches. Regardless of type, articles have focused on addressing limitations that impede the full efficiency of BCI for disability and recommended solutions for these limitations. CONCLUSIONS: Studies on wheelchair control based on BCI for disability considerably influence society due to the large number of people with disability. Therefore, we aim to provide researchers and developers with a clear understanding of this platform and highlight the challenges and gaps in the current and future studies.


Assuntos
Interfaces Cérebro-Computador , Pessoas com Deficiência , Eletroencefalografia , Cadeiras de Rodas , Simulação por Computador , Pessoas com Deficiência/reabilitação , Fontes de Energia Elétrica , Desenho de Equipamento , Potenciais Evocados P300 , Humanos , Movimento (Física) , Robótica , Segurança , Interface Usuário-Computador , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...