Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Microsc Ultrastruct ; 10(3): 133-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504586

RESUMO

Context: Many congenital malformations are seen increasingly, due to diabetic mothers causing a burden on health systems. Corn silk (CS) extract has been used as a natural hypoglycemic treatment. However, its teratogenic safety was not studied. Aims: Therefore, in this study, we examine the effect of CS aqueous extract on fetuses, offspring of normal and diabetic female mice treated with CS aqueous extract. Settings and Design: Pregnant female mice were divided into two groups diabetic and nondiabetic. Then, each of these groups was divided into control and treated. Subjects and Methods: A daily dose of 4 g/kg of CS aqueous extract was given orally to the treated groups, control groups were given distilled water. The collection of samples was at day 16.5 of pregnancy, and neonates. Brown adipose tissue (BAT) in the sections of the preserved sample was examined. Statistical Analysis Used: BAT areas were measured from 10 samples of each treatment age group in 2 sections. Data were analyzed with one-way ANOVA, then, two-independent sample test (Mann-Whitney) was done to test the significance of differences between groups. Results: The BAT areas were negatively affected by diabetes and the extract. Both the extract and diabetes caused an increase in fat accumulation in the adipocytes with varying degrees. Conclusions: This study showed for the first time to our knowledge that the use of CS aqueous extract during pregnancy affected BAT organization and area, and that the used dose did not decrease the malformations caused by diabetes. More studies with different doses should be investigated.

2.
J Microsc Ultrastruct ; 7(2): 78-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293889

RESUMO

PURPOSE: The aim of this study was to investigate the correlation between the use of anabolic-androgenic steroids (AASs) among the population of Jeddah, Saudi Arabia, and their knowledge and attitudes. METHODS: This was a community-based, cross-sectional observational study. This study was conducted using a questionnaire that was distributed among the population during the period from February 3, 2018, to February 25, 2018. This questionnaire comprised 31 questions, designed to evaluate the knowledge and attitudes toward using AASs. RESULTS: A total of 300 participants were enrolled in the study. The mean age of the population was 30.66 ± 9.2 years. Fourteen participants admitted using AASs, with a percentage of 4.7%, among whom 85.7% were male (P = 0.0005). Seventy-eight percent of AAS users believed that AASs do not cause tolerance when taken for a longtime (P = 0.023). However, the majority of both AAS users and nonusers did not agree on taking AASs for a longtime. Our results showed a strong correlation between not taking AASs and not consuming energy drinks (P = 0.0023). Half of our respondents exhibited poor knowledge regarding the side effects of AASs. The level of knowledge did not correlate with the use of AAS, gender, exercising, or consuming energy drinks. CONCLUSION: The results showed poor knowledge regarding using AASs among the population of Jeddah. Thus, we recommend having a national awareness program in order to prevent the possible side effects of misusing AASs.

3.
Environ Sci Pollut Res Int ; 26(5): 5054-5064, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30607847

RESUMO

Commercial artificial sweeteners present in the market are usually made of combination of nutritive and artificial sweeteners such as sorbitol and aspartame. The aim of this research was to study the effect of in utero exposure to commercial artificial sweeteners on the mouse development and on mammary gland in different stages (18-day embryos and 4-week-old mice). Pregnant mice of treated groups were given 50 mg/kg body weight of commercial artificial sweetener. The dose was given on day 1 of pregnancy until 3-week nursing, while the controls were given distilled water. Congenital malformations were seen in treated 18-day fetus and 4-week-old mice, such as a significant decrease in the diameter of the placenta and the weight of the fetuses, while in 4-week-old mice, a significant decrease in the length of the body, limbs, and tail was seen compared to the controls. The result of this study showed that in 18-day fetuses, clusters of mammary gland in the treated mice seemed to be more differentiated than the controls. In 4-week-old mice, the number of mammary gland ducts in the treated group was significantly more than the control group, and the lumen of the ducts in the treated sections seemed to be narrower than the controls, also many regressing terminal end buds (TEBs) were seen in the treated group. A significant increase in the mammary gland area of treated group was seen compared to the controls.


Assuntos
Glândulas Mamárias Animais/ultraestrutura , Organogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Edulcorantes/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Idade Gestacional , Glândulas Mamárias Animais/embriologia , Exposição Materna , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
4.
Int. j. morphol ; 37(1): 212-220, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-990029

RESUMO

SUMMARY: In spinal cord injury, radical treatment is still a persistent hope for patients and clinicians. Our study aimed to determine the different histological changes in central, cranial and caudal sites of compressed spinal cord as a result of neuroectodermal stem cells (NESCs) transplantation in rats. For extraction of NESCs, future brains were extracted from mice embryos (10-days old) and cultured. Eighty, male rats were divided randomly into control, sham (20 rats each); while 40 rats were subjected to compressed spinal cord injury (CSCI). Seven days after spinal cord injury, rats were subdivided into 2 groups (20 rats each); an untreated and treated with NESCs injected cranial and caudal to the site of the spinal cord injury. Rats were sacrificed 4 weeks after transplantations of NESCs and specimens from the spinal cord at the central, cranial and caudal to site of spinal cord injury were proceeded to be stained with haematoxylin & eosin, osmic acid and Immunohistochemistry of glial fibrillary acidic protein (GFAP). Sections of CSCI revealed areas of hemorrhages, necrosis and cavitation limited by reactive astrocytosis, with upregulation of GFAP expression. Evidence of remyelination and mitigation of histopathological features, reactive astrocytosis in CSCI sections were more pronounced in cranial than in caudal region. NESCs transplantation ameliorated the pathological changes, promoted remyelination.


RESUMEN: En la lesión de la médula espinal, el tratamiento radical aún sigue siendo el tratamiento preferente para los pacientes y los médicos. El objetivo de este estudio fue determinar los diferentes cambios histológicos en los sitios centrales, craneales y caudales de la médula espinal comprimida, como resultado del trasplante de células madre neuroectodérmicas (NESCs) en ratas. Para la extracción de NESCs, se extrajeron y cultivaron los cerebros de embriones de ratones de 10 días de edad. Se dividieron 80 ratas macho aleatoriamente en grupos control, simulado (20 ratas cada una); mientras que 40 ratas fueron sometidas a lesión de la médula espinal comprimida (CSCI). Siete días después de la lesión de la médula espinal, las ratas se subdividieron en 2 grupos (20 ratas cada uno); un grupo no tratado y un grupo tratado con NESCs inyectado craneal y caudal en el sitio de la lesión. Las ratas fueron sacrificadas 4 semanas después de los trasplantes de NESCs y las muestras de la médula espinal en el centro, craneal y caudal del sitio de lesión fueron teñidas con hematoxilina y eosina, ácido ósmico e inmunohistoquímica de la proteína ácida fibrilar glial (GFAP). Las secciones de CSCI revelaron áreas de hemorragias, necrosis y cavitación limitadas por astrocitosis reactiva, con una regulación positiva de la expresión de GFAP. Evidencia de remielinización y mitigación de características histopatológicas, astrocitosis reactiva en secciones de CSCI fue más pronunciada en la región craneal que en la caudal. El trasplante de NESC mejoró los cambios patológicos, promoviendo la remielinización.


Assuntos
Animais , Masculino , Ratos , Traumatismos da Medula Espinal/cirurgia , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco , Imuno-Histoquímica , Ratos Wistar , Ectoderma , Remielinização , Proteína Glial Fibrilar Ácida
5.
Int. j. morphol ; 37(1): 349-357, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-990050

RESUMO

SUMMARY: The aim of this study was to determine the possible regenerative effect of neuroectodermal stem cells on the ultrastructural, and locomotor function resulting from compressed injury to the spinal cord in a rat model. Forty male rats were divided into control and sham groups (20 rats each). Compressed spinal cord injured (CSCI) were forty rats which subdivided equally into: untreated, treated by neuroectodermal stem cells (NESCs). After four weeks, all rats in different groups were scarified, samples were taken from central, cranial, and caudal to the site of spinal cord injury. Specimens were prepared for light and electron microscopic examination. The number of remyelinated axons in central, cranial and caudal regions to the injured spinal cord after transplantation of NESCs was counted. The open field test assessed the locomotor function. Results revealed that compressed spinal cord injury resulted in loss and degeneration of numerous nerve fibers, myelin splitting and degeneration of mitochondria. Four weeks after transplantation of NESCs regenerated axons were noticed in cranial and central sites, while degenerate axons were noticed caudal to the lesion. Number of remyelinated axons was significantly increased in both central and cranial to the site of spinal cord injury in comparison with caudal region which had the least number of remyelinated axons. Transplantation of NESCs improved significantly the locomotor functional activity In conclusion, neuroectodermal stem cells transplantation ameliorated the histopathological and ultrastructural changes, and improved the functional locomotor activity in CSCI rat.


RESUMEN: El objetivo de este estudio fue determinar el posible efecto regenerativo de las células madre neuroectodérmicas en la función ultraestructural y locomotora de una lesión comprimida en la médula espinal en un modelo de rata. Cuarenta ratas macho se dividieron en grupos control y sham (20 ratas en cada grupo). La médula espinal lesionada (CSCI) tenía cuarenta ratas que se subdividieron de igual forma en los siguientes grupos: no tratadas, tratadas con células madre neuroectodérmicas (NESCs). Al término de cuatro semanas, todas las ratas en los diferentes grupos fueron escarificadas, se tomaron muestras de las áreas central, craneal y caudal en relación al sitio de la lesión de la médula espinal. Las muestras fueron preparadas para examen microscópico de luz y electrónica. Se contó el número de axones remielinizados en las regiones central, craneal y caudal de la médula espinal lesionada después del trasplante de NESCs. La prueba de campo abierto evaluó la función locomotora. Los resultados revelaron que la lesión de la médula espinal comprimida provocó la pérdida y degeneración de numerosas fibras nerviosas, la división de la mielina y la degeneración de las mitocondrias. Cuatro semanas después del trasplante de NESCs, se notaron axones regenerados en los sitios craneales y centrales, mientras que los axones degenerados se notaron caudal a la lesión. El número de axones remielinizados aumentó significativamente tanto en el centro como en el cráneo hasta el sitio de la lesión de la médula espinal en comparación con la región caudal que tenía el menor número de axones remielinizados. El trasplante de NESCs mejoró significativamente la actividad funcional locomotora. En conclusión, el trasplante de células madre neuroectodérmicas mejoró los cambios histopatológicos y ultraestructurales, y mejoró la actividad locomotora funcional en la rata CSCI.


Assuntos
Animais , Feminino , Ratos , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Regeneração Nervosa/fisiologia , Medula Espinal/ultraestrutura , Axônios , Atividade Motora
6.
Cell Reprogram ; 16(2): 151-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24606239

RESUMO

The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.


Assuntos
Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Células-Tronco Embrionárias/ultraestrutura , Mitocôndrias/ultraestrutura , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...