Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Complex Intell Systems ; : 1-27, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36777815

RESUMO

When COVID-19 spread in China in December 2019, thousands of studies have focused on this pandemic. Each presents a unique perspective that reflects the pandemic's main scientific disciplines. For example, social scientists are concerned with reducing the psychological impact on the human mental state especially during lockdown periods. Computer scientists focus on establishing fast and accurate computerized tools to assist in diagnosing, preventing, and recovering from the disease. Medical scientists and doctors, or the frontliners, are the main heroes who received, treated, and worked with the millions of cases at the expense of their own health. Some of them have continued to work even at the expense of their lives. All these studies enforce the multidisciplinary work where scientists from different academic disciplines (social, environmental, technological, etc.) join forces to produce research for beneficial outcomes during the crisis. One of the many branches is computer science along with its various technologies, including artificial intelligence, Internet of Things, big data, decision support systems (DSS), and many more. Among the most notable DSS utilization is those related to multicriterion decision making (MCDM), which is applied in various applications and across many contexts, including business, social, technological and medical. Owing to its importance in developing proper decision regimens and prevention strategies with precise judgment, it is deemed a noteworthy topic of extensive exploration, especially in the context of COVID-19-related medical applications. The present study is a comprehensive review of COVID-19-related medical case studies with MCDM using a systematic review protocol. PRISMA methodology is utilized to obtain a final set of (n = 35) articles from four major scientific databases (ScienceDirect, IEEE Xplore, Scopus, and Web of Science). The final set of articles is categorized into taxonomy comprising five groups: (1) diagnosis (n = 6), (2) safety (n = 11), (3) hospital (n = 8), (4) treatment (n = 4), and (5) review (n = 3). A bibliographic analysis is also presented on the basis of annual scientific production, country scientific production, co-occurrence, and co-authorship. A comprehensive discussion is also presented to discuss the main challenges, motivations, and recommendations in using MCDM research in COVID-19-related medial case studies. Lastly, we identify critical research gaps with their corresponding solutions and detailed methodologies to serve as a guide for future directions. In conclusion, MCDM can be utilized in the medical field effectively to optimize the resources and make the best choices particularly during pandemics and natural disasters.

2.
IEEE J Biomed Health Inform ; 27(2): 878-887, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35417360

RESUMO

Efficient evaluation for machine learning (ML)-based intrusion detection systems (IDSs) for federated learning (FL) in the Internet of Medical Things (IoMTs) environment falls under the standardisation and multicriteria decision-making (MCDM) problems. Thus, this study is developing an MCDM framework for standardising and benchmarking the ML-based IDSs used in the FL architecture of IoMT applications. In the methodology, firstly, the evaluation criteria of ML-based IDSs are standardised using the fuzzy Delphi method (FDM). Secondly, the evaluation decision matrix (DM) is formulated based on the intersection of standardised evaluation criteria and a list of ML-based IDSs. Such formulation is achieved using a dataset with 125,973 records, and each record comprises 41 features. Thirdly, the integration of MCDM methods is formulated to determine the importance weights of the main and sub standardised security and performance criteria, followed by benchmarking and selecting the optimal ML-based IDSs. In this phase, the Borda voting method is used to unify the different ranks and perform a group benchmarking context. The following results are confirmed. (1) Using FDM, 17 out of 20 evaluation criteria (14 for security and 3 for performance) reach the consensus of experts. (2) The area under curve criterion has the lowest set of weights, whilst the CPU time criterion has the highest one. (3) VIKOR group ranking shows that the BayesNet is a best classifier, whilst SVM is the last choice. For evaluation, three assessments, namely, systematic ranking, computational cost and comparative analysis, are used.


Assuntos
Benchmarking , Humanos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...