Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0270463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895732

RESUMO

The Salicornia L. has been considered one of the most taxonomically challenging genera due to high morphological plasticity, intergradation between related species, and lack of diagnostic features in preserved herbarium specimens. In the United Arab Emirates (UAE), only one species of this genus, Salicornia europaea, has been reported, though investigating its identity at the molecular level has not yet been undertaken. Moreover, based on growth form and morphology variation between the Ras-Al-Khaimah (RAK) population and the Umm-Al-Quwain (UAQ) population, we suspect the presence of different species or morphotypes. The present study aimed to initially perform species identification using multilocus DNA barcode markers from chloroplast DNA (cpDNA) and nuclear ribosomal DNA (nrDNA), followed by the genetic divergence between two populations (RAK and UAQ) belonging to two different coastal localities in the UAE. The analysis resulted in high-quality multilocus barcode sequences subjected to species discrimination through the unsupervised OTU picking and supervised learning methods. The ETS sequence data from our study sites had high identity with the previously reported sequences of Salicornia persica using NCBI blast and was further confirmed using OTU picking methods viz., TaxonDNAs Species identifier and Assemble Species by Automatic Partitioning (ASAP). Moreover, matK sequence data showed a non-monophyletic relationship, and significant discrimination between the two populations through alignment-based unsupervised OTU picking, alignment-free Co-Phylog, and alignment & alignment-free supervised learning approaches. Other markers viz., rbcL, trnH-psbA, ITS2, and ETS could not distinguish the two populations individually, though their combination with matK (cpDNA & cpDNA+nrDNA) showed enough population discrimination. However, the ITS2+ETS (nrDNA) exhibited much higher genetic divergence, further splitting both the populations into four haplotypes. Based on the observed morphology, genetic divergence, and the number of haplotypes predicted using the matK marker, it can be suggested that two distinct populations (RAK and UAQ) do exist. Further extensive morpho-taxonomic studies are required to determine the inter-population variability of Salicornia in the UAE. Altogether, our results suggest that S. persica is the species that grow in the present study area in UAE, and do not support previous treatments as S. europaea.


Assuntos
Chenopodiaceae , Código de Barras de DNA Taxonômico , Chenopodiaceae/genética , Código de Barras de DNA Taxonômico/métodos , DNA de Cloroplastos/genética , DNA de Plantas/genética , Marcadores Genéticos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Aprendizado de Máquina Supervisionado
2.
Plants (Basel) ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34961211

RESUMO

Arabia is the largest peninsula in the world, with >3000 species of vascular plants. Not much effort has been made to generate a multi-locus marker barcode library to identify and discriminate the recorded plant species. This study aimed to determine the reliability of the available Arabian plant barcodes (>1500; rbcL and matK) at the public repository (NCBI GenBank) using the unsupervised and supervised methods. Comparative analysis was carried out with the standard dataset (FINBOL) to assess the methods and markers' reliability. Our analysis suggests that from the unsupervised method, TaxonDNA's All Species Barcode criterion (ASB) exhibits the highest accuracy for rbcL barcodes, followed by the matK barcodes using the aligned dataset (FINBOL). However, for the Arabian plant barcode dataset (GBMA), the supervised method performed better than the unsupervised method, where the Random Forest and K-Nearest Neighbor (gappy kernel) classifiers were robust enough. These classifiers successfully recognized true species from both barcode markers belonging to the aligned and alignment-free datasets, respectively. The multi-class classifier showed high species resolution following the two classifiers, though its performance declined when employed to recognize true species. Similar results were observed for the FINBOL dataset through the supervised learning approach; overall, matK marker showed higher accuracy than rbcL. However, the lower rate of species identification in matK in GBMA data could be due to the higher evolutionary rate or gaps and missing data, as observed for the ASB criterion in the FINBOL dataset. Further, a lower number of sequences and singletons could also affect the rate of species resolution, as observed in the GBMA dataset. The GBMA dataset lacks sufficient species membership. We would encourage the taxonomists from the Arabian Peninsula to join our campaign on the Arabian Barcode of Life at the Barcode of Life Data (BOLD) systems. Our efforts together could help improve the rate of species identification for the Arabian Vascular plants.

3.
Physiol Mol Biol Plants ; 24(4): 521-533, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30042610

RESUMO

The biotechnology of desert plants is a vast subject. The main applications in this broad field of study comprises of plant tissue culture, genetic engineering, molecular markers and others. Biotechnology applications have the potential to address biodiversity conservation as well as agricultural, medicinal, and environmental issues. There is a need to increase our knowledge of the genetic diversity through the use of molecular genetics and biotechnological approaches in desert plants in the Arabian Gulf region including those in the United Arab Emirates (UAE). This article provides a prospective research for the study of UAE desert plant diversity through DNA fingerprinting as well as understanding the mechanisms of both abiotic stress resistance (including salinity, drought and heat stresses) and biotic stress resistance (including disease and insect resistance). Special attention is given to the desert halophytes and their utilization to alleviate the salinity stress, which is one of the major challenges in agriculture. In addition, symbioses with microorganisms are thought to be hypothesized as important components of desert plant survival under stressful environmental conditions. Thus, factors shaping the diversity and functionality of plant microbiomes in desert ecosystems are also emphasized in this article. It is important to establish a critical mass for biotechnology research and applications while strengthening the channels for collaboration among research/academic institutions in the area of desert plant biotechnology.

4.
Front Plant Sci ; 9: 1929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30719028

RESUMO

The Arabian Peninsula is known to have a comprehensive and rich endowment of unique and genetically diverse plant genetic resources. Analysis and conservation of biological diversity is a crucial issue to the whole Arabian Peninsula. The rapid and accurate delimitation and identification of a species is crucial to genetic diversity analysis and the first critical step in the assessment of distribution, population abundance and threats related to a particular target species. During the last two decades, classical strategies of evaluating genetic variability, such as morphology and physiology, have been greatly complemented by phylogenetic, taxonomic, genetic diversity and breeding research molecular studies. At present, initiatives are taking place around the world to generate DNA barcode libraries for vascular plant flora and to make these data available in order to better understand, conserve and utilize biodiversity. The number of herbarium collection-based plant evolutionary genetics and genomics studies being conducted has been increasing worldwide. The herbaria provide a rich resource of already preserved and identified material, and these as well as freshly collected samples from the wild can be used for creating a reference DNA barcode library for the vascular plant flora of a region. This review discusses the main molecular and genomic techniques used in plant identification and biodiversity analysis. Hence, we highlight studies emphasizing various molecular techniques undertaken during the last 10 years to study the plant biodiversity of the Arabian Peninsula. Special emphasis on the role of DNA barcoding as a powerful tool for plant biodiversity analysis is provided, along with the crucial role of herbaria in creating a DNA barcode library.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...