Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 76: 356-364, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482538

RESUMO

A new method was developed for the characterization and detection of ketoconazole using surface enhanced Raman spectroscopy (SERS) by designing substrates and performing the bands' assignments. Thus, spherical silver nanoparticles (Ag-NPs) were synthesized by a reduction method and designed as substrates for SERS application. The Ag-NPs were characterized using a scanning electron microscope, Fourier transformed infrared spectroscopy and a high-resolution transmission electron microscope. TEM results indicated that the average size of the Ag-NPs was 15nm. The UV spectrum showed a maximum absorbance of Ag-NPs at about 400nm. When Ag-NPs were used as substrates in SERS, the Raman spectra of KCZ showed a significant enhancement of the Raman bands. An important finding is a linear relationship between the logarithmical scale of KCZ concentration and the intensity of the SERS bands, for example at 1050cm-1 of KCZ, which is due to the CN vibration. This was optimized and utilized to develop a calibration curve, which was then used for the detection of the KCZ in real pharmaceutical samples. The method has the advantages of a wide dynamic range with a high coefficient of determination and detection limit calculated based on the signal-to-noise ratio of 3, was 2.6×10-10M and the limit of quantification was 7.8×10-10M. The potential applications that take advantage of the high SERS sensitivity of this method are discussed for practical KCZ analysis where were quantified with this method.


Assuntos
Nanopartículas Metálicas , Cetoconazol , Microscopia Eletrônica de Transmissão , Prata , Análise Espectral Raman
2.
Sci Rep ; 6: 32185, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572919

RESUMO

Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm(-1) were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10(-12) M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...