Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729135

RESUMO

Multiple sequence alignment (MSA) is essential for understanding genetic variations controlling phenotypic traits in all living organisms. The post-analysis of MSA results is a difficult step for researchers who do not have programming skills. Especially those working with large scale data and looking for potential variations or variable sample groups. Generating bi-allelic data and the comparison of wild and alternative gene forms are important steps in population genetics. Customising MSA visualisation for a single page view is difficult, making viewing potential indels and variations challenging. There are currently no bioinformatics tools that permit post-MSA analysis, in which data on gene and single nucleotide scales could be combined with gene annotations and used for cluster analysis. We introduce "AlignStatPlot," a new R package and online tool that is well-documented and easy-to use for MSA and post-MSA analysis. This tool performs both traditional and cutting-edge analyses on sequencing data and generates new visualisation methods for MSA results. When compared to currently available tools, AlignStatPlot provides a robust ability to handle and visualise diversity data, while the online version will save time and encourage researchers to focus on explaining their findings. It is a simple tool that can be used in conjunction with population genetics software.


Assuntos
Big Data , Biologia Computacional , Alinhamento de Sequência , Alelos , Análise por Conglomerados
2.
Front Plant Sci ; 13: 762002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548283

RESUMO

Ascochyta blight (AB), caused by the fungal pathogen Ascochyta rabiei, is a devastating foliar disease of chickpea (Cicer arietinum L.). The genotyping-by-sequencing (GBS)-based approach was deployed for mapping QTLs associated with AB resistance in chickpea in two recombinant inbred line populations derived from two crosses (AB3279 derived from ILC 1929 × ILC 3279 and AB482 derived from ILC 1929 × ILC 482) and tested in six different environments. Twenty-one different genomic regions linked to AB resistance were identified in regions CalG02 and CalG04 in both populations AB3279 and AB482. These regions contain 1,118 SNPs significantly associated with AB resistance (p ≤ 0.001), which explained 11.2-39.3% of the phenotypic variation (PVE). Nine of the AB resistance-associated genomic regions were newly detected in this study, while twelve regions were known from previous AB studies. The proposed physical map narrows down AB resistance to consistent genomic regions identified across different environments. Gene ontology (GO) assigned these QTLs to 319 genes, many of which were associated with stress and disease resistance, and with most important genes belonging to resistance gene families such as leucine-rich repeat (LRR) and transcription factor families. Our results indicate that the flowering-associated gene GIGANTEA is a possible key factor in AB resistance in chickpea. The results have identified AB resistance-associated regions on the physical genetic map of chickpea and allowed for the identification of associated markers that will help in breeding of AB-resistant varieties.

3.
Plant Genome ; 14(1): e20066, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615748

RESUMO

Stripe or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici is a major threat to bread wheat production worldwide. The breakdown in resistance of certain major genes and newly emerging aggressive races of stripe rusts pose serious concerns in all main wheat growing areas of the world. To identify new sources of resistance and associated QTL for effective utilization in future breeding programs an association mapping (AM) panel comprising of 600 bread wheat landraces collected from eight different countries conserved at ICARDA gene bank were evaluated for seedling and adult plant resistance against the PstS2 and Warrior races of stripe rust at the Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey during 2016, 2018 and 2019. A set of 25,169 informative SNP markers covering the whole genome were used to examine the population structure, linkage disequilibrium and marker-trait associations in the AM panel. The genome-wide association study (GWAS) was carried out using a Mixed Linear Model (MLM). We identified 47 SNP markers across 19 chromosomes with significant SNP-trait associations for both seedling stage and adult plant resistance. The threshold of significance for all SNP-trait associations was determined by the false discovery rate (q) ≤ 0.05. Three genomic regions (QYr.1D_APR, QYr.3A_seedling and QYr.7D_seedling) identified in this study do not correspond to previously reported Yr genes or QTL, suggesting new genomic regions for stripe rust resistance.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Pão , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Locos de Características Quantitativas , Triticum/genética , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...