Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J King Saud Univ Sci ; 34(7): 102254, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35957965

RESUMO

The medical image enhancement is major class in the image processing which aims for improving the medical diagnosis results. The improving of the quality of the captured medical images is considered as a challenging task in medical image. In this study, a trace operator in fractional calculus linked with the derivative of fractional Rényi entropy is proposed to enhance the low contrast COVID-19 images. The pixel probability values of the input image are obtained first in the proposed image enhancement model. Then the covariance matrix between the input image and the probability of a pixel intensity of the input image to be calculated. Finally, the image enhancement is performed by using the convolution of covariance matrix result with the input image. The proposed enhanced image algorithm is tested against three medical image datasets with different qualities. The experimental results show that the proposed medical image enhancement algorithm achieves the good image quality assessments using both the BRISQUE, and PIQE quality measures. Moreover, the experimental results indicated that the final enhancement of medical images using the proposed algorithm has outperformed other methods. Overall, the proposed algorithm has significantly improved the image which can be useful for medical diagnosis process.

2.
Entropy (Basel) ; 22(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33286289

RESUMO

Many health systems over the world have collapsed due to limited capacity and a dramatic increase of suspected COVID-19 cases. What has emerged is the need for finding an efficient, quick and accurate method to mitigate the overloading of radiologists' efforts to diagnose the suspected cases. This study presents the combination of deep learning of extracted features with the Q-deformed entropy handcrafted features for discriminating between COVID-19 coronavirus, pneumonia and healthy computed tomography (CT) lung scans. In this study, pre-processing is used to reduce the effect of intensity variations between CT slices. Then histogram thresholding is used to isolate the background of the CT lung scan. Each CT lung scan undergoes a feature extraction which involves deep learning and a Q-deformed entropy algorithm. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, combining all extracted features significantly improves the performance of the LSTM network to precisely discriminate between COVID-19, pneumonia and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 321 patients is 99.68%.

3.
Entropy (Basel) ; 22(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33286802

RESUMO

Brain tumor detection at early stages can increase the chances of the patient's recovery after treatment. In the last decade, we have noticed a substantial development in the medical imaging technologies, and they are now becoming an integral part in the diagnosis and treatment processes. In this study, we generalize the concept of entropy difference defined in terms of Marsaglia formula (usually used to describe two different figures, statues, etc.) by using the quantum calculus. Then we employ the result to extend the local binary patterns (LBP) to get the quantum entropy LBP (QELBP). The proposed study consists of two approaches of features extractions of MRI brain scans, namely, the QELBP and the deep learning DL features. The classification of MRI brain scan is improved by exploiting the excellent performance of the QELBP-DL feature extraction of the brain in MRI brain scans. The combining all of the extracted features increase the classification accuracy of long short-term memory network when using it as the brain tumor classifier. The maximum accuracy achieved for classifying a dataset comprising 154 MRI brain scan is 98.80%. The experimental results demonstrate that combining the extracted features improves the performance of MRI brain tumor classification.

4.
Entropy (Basel) ; 20(5)2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265434

RESUMO

Kidney image enhancement is challenging due to the unpredictable quality of MRI images, as well as the nature of kidney diseases. The focus of this work is on kidney images enhancement by proposing a new Local Fractional Entropy (LFE)-based model. The proposed model estimates the probability of pixels that represent edges based on the entropy of the neighboring pixels, which results in local fractional entropy. When there is a small change in the intensity values (indicating the presence of edge in the image), the local fractional entropy gives fine image details. Similarly, when no change in intensity values is present (indicating smooth texture), the LFE does not provide fine details, based on the fact that there is no edge information. Tests were conducted on a large dataset of different, poor-quality kidney images to show that the proposed model is useful and effective. A comparative study with the classical methods, coupled with the latest enhancement methods, shows that the proposed model outperforms the existing methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...