Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36839812

RESUMO

Pharmaceutical tablet disintegration is a critical process for dissolving and enabling the absorption of the drug substance into the blood stream. The tablet disintegration process consists of multiple connected and interdependent mechanisms: liquid penetration, swelling, dissolution, and break-up. One key dependence is the dynamic change of the pore space in a tablet caused by the swelling of particles while the tablet takes up liquid. This study analysed the changes in the pore structure during disintegration by coupling the discrete element method (DEM) with a single-particle swelling model and experimental liquid penetration data from terahertz-pulsed imaging (TPI). The coupled model is demonstrated and validated for pure microcrystalline cellulose (MCC) tablets across three porosities (10, 15, and 22%) and MCC with three different concentrations of croscarmellose sodium (CCS) (2, 5, and 8% w/w). The model was validated using experimental tablet swelling from TPI. The model captured the difference in the swelling behaviour of tablets with different porosities and formulations well. Both the experimental and modelling results showed that the swelling was lowest (i.e., time to reach the maximum normalised swelling capacity) for tablets with the highest CCS concentration, cCCS = 8%. The simulations revealed that this was caused by the closure of the pores in both the wetted volume and dry volume of the tablet. The closure of the pores hinders the liquid from accessing other particles and slows down the overall swelling process. This study provides new insights into the changes in the pore space during disintegration, which is crucial to better understand the impact of porosity and formulations on the performance of tablets.

2.
Eur J Pharm Biopharm ; 155: 147-161, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32853694

RESUMO

Hot melt extrusion (HME) is a widely used manufacturing process for pharmaceutical solid dispersions. The complexity of the HME formulations and the number of excipients used in the process are increasing with the advancement of the relevant knowledge. However, one of the areas that is still significantly lacking understanding is the control of internal microstructure of extrudates. Internal microstructure, consisting of voids, in hot melt extruded amorphous solid dispersions is often observed without the causes having been systemically investigated in the literature. In this study, we investigated a range of factors that demonstrated their impacts on the formation of the voids. These include the effect of the types of the materials (i.e. drug, polymer and additive) used in the formulation, the quantity of the drug and the additives used, the key extrusion processing parameters, the type of extruder, and the drying of the raw materials prior to extrusion. The results indicate that the appropriate viscosity and the presence of phase-separated particulates are essential for the formation of the voids. The particulates act as nuclei for the entrapped gas bubbles and the viscosity of the mixture during extrusion governs the collapse/escape of the bubbles. To minimise void formation, the results of this study indicate that slow screw speed, low moisture content of the raw materials, fewer particulates and the addition of lubricants, such as low melting lipid excipients, could be beneficial. This study systematically examines the mechanism of void formation in HME extrudates and generates new strategies that can be used to manage such void formations.


Assuntos
Tecnologia de Extrusão por Fusão a Quente/métodos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/síntese química , Difração de Raios X/métodos , Microtomografia por Raio-X/métodos
3.
Int J Pharm ; 587: 119645, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32679259

RESUMO

Drug release performance of tablets is often highly dependent on disintegration, and water ingress is typically the rate-limiting step of the disintegration process. Water ingress into tablets is known to be highly influenced by the microstructure of the tablet, particularly tablet porosity. Initial particle size distribution of the formulation and the predominant powder deformation behaviour during compression are expected to impact such microstructure, making both factors important to investigate in relation to water ingress into tablets. Two size fractions (<125 and 355-500 µm) of plastically deforming microcrystalline cellulose (MCC) and fragmenting di-calcium phosphate (DCP) were compressed into tablets with porosities ranging from 5 to 30% (with 5% increments). The total porosity of the tablets was measured using terahertz time-domain spectroscopy and liquid transport into these tablets was quantified using a flow cell coupled to terahertz pulsed imaging. It was found that tablets compressed from large MCC particles resulted in slower water ingress compared to tablets prepared from small MCC particles. In contrast, no difference in liquid transport kinetics was observed for tablets prepared across both size fractions of DCP particles. These results highlight the complex interplay between material characteristics, the process induced microstructure, and the liquid transport process that ultimately determines the drug release performance of the tablets.


Assuntos
Excipientes , Água , Química Farmacêutica , Tamanho da Partícula , Porosidade , Comprimidos
4.
Int J Pharm ; 584: 119380, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32407939

RESUMO

Fast disintegrating tablets have commonly been used for fast oral drug delivery to patients with swallowing difficulties. The different characteristics of the pore structure of such formulations influence the liquid transport through the tablet and hence affect the disintegration time and the release of the drug in the body. In this work, terahertz time-domain spectroscopy and terahertz pulsed imaging were used as promising analytical techniques to quantitatively analyse the impact of the structural properties on the liquid uptake and swelling rates upon contact with the dissolution medium. Both the impact of porosity and formulation were investigated for theophylline and paracetamol based tablets. The drug substances were either formulated with functionalised calcium carbonate (FCC) with porosities of 45% and 60% or with microcrystalline cellulose (MCC) with porosities of 10% and 25%. The terahertz results reveal that the rate of liquid uptake is clearly influenced by the porosity of the tablets with a faster liquid transport observed for tablets with higher porosity, indicating that the samples exhibit structural similarity in respect to pore connectivity and pore size distribution characteristics in respect to permeability. The swelling of the FCC based tablets is fully controlled by the amount of disintegrant, whereas the liquid uptake is driven by the FCC material and the interparticle pores created during compaction. The MCC based formulations are more complex as the MCC significantly contributes to the overall tablet swelling. An increase in swelling with increasing porosity is observed in these tablets, which indicates that such formulations are performance-limited by their ability to take up liquid. Investigating the effect of the microstructure characteristics on the liquid transport and swelling kinetics is of great importance for reaching the next level of understanding of the drug delivery, and, depending on the surface nature of the pore carrier function, in turn controlling the performance of the drug mainly in respect to dissolution in the body.


Assuntos
Carbonato de Cálcio/química , Celulose/química , Química Farmacêutica/métodos , Porosidade/efeitos dos fármacos , Comprimidos/química , Acetaminofen/química , Relação Dose-Resposta a Droga , Excipientes/química , Humanos , Cinética , Espectroscopia Terahertz , Teofilina/química
5.
AAPS PharmSciTech ; 20(5): 207, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31161397

RESUMO

The use of inkjet printing for pharmaceutical manufacturing is gaining interest for production of personalized dosage forms tailored to specific patients. As part of the manufacturing, it is imperative to ensure that the correct dose is printed. The aim of this study was to use inkjet printing for manufacturing of personalized dosage forms combined with the use of near-infrared (NIR) and Raman spectroscopy as complementary analytical techniques for active pharmaceutical ingredient (API) quantification of the inkjet-printed dosage forms. Three APIs, propranolol (0.5-4.1 mg), montelukast (2.1-12.1 mg), and haloperidol (0.6-4.1 mg) were inkjet printed in 1 cm2 areas on a porous substrate. The printed doses were non-destructively analyzed by transmission NIR and Raman spectroscopy (both transmission and backscatter). X-ray computed microtomography (µ-CT) analysis was undertaken for porosity measurements of the substrate. The API content was confirmed using high-performance liquid chromatography (HPLC), and the content in the dosage forms was modeled from the NIR and Raman spectra using partial least squares regression (PLS). HPLC analysis revealed a linear correlation of the number of layers printed to the API content. The resulting PLS models for both NIR and Raman had R2 values between 0.95 and 0.99. The best predictive model was obtained using NIR, followed by Raman spectroscopy. µ-CT revealed the substrate to be highly porous and optimal for inkjet printing. In conclusion, NIR and Raman spectroscopic techniques could be used complementary as fast API quantification tools for inkjet-printed medicines.


Assuntos
Preparações Farmacêuticas/química , Impressão Tridimensional , Análise Espectral Raman/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Análise dos Mínimos Quadrados , Preparações Farmacêuticas/análise , Porosidade , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Microtomografia por Raio-X/métodos
6.
AAPS PharmSciTech ; 20(6): 238, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243631

RESUMO

Mohammed Al-Sharabi's affiliation was incorrect at the time of publishing. The updated affiliation appears below.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...