Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 22(1): 100331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494247

RESUMO

BACKGROUND: Orthodontic relapse is a frequent problem that many patients experience. Although orthodontic therapy has advanced, recurrence rates can still reach 90%. We undertook a study to look at the possibilities of laser bio-stimulation and stem cells because they have showed promising outcomes in lowering recurrence rates. OBJECTIVES: Our objective was to analyze the effects of Low-level laser therapy (LLLT) and Mesenchymal stem cells (MSC) alone and collectively on the rate of orthodontic relapse in rats radiographically and histologically. METHODS: Rat maxillary central incisors were moved distally for two weeks. One week later, the incisors were retained. Animals (n = 40) were split into four groups. Control group (C); laser treatment Group (L), Bone marrow mesenchymal stem cells Group (BMSCs) and combination of Stem cells and laser-irradiation group (BMSCs-L). Removed retainer permitted relapse. Before stem cell application or laser irradiation, each animal underwent two CBCT scans. Rat maxillae were stained with Hx&E, Masson trichrome, and tartrate-resistant acid phosphatase antibody for histology, histochemistry, and immunohistochemistry. RESULTS AND CONCLUSIONS: LLLT could reduce the relapse tendency, as shown by increased bone density and enhanced remodeling of hetero-formed periodontal ligament (PDL). Furthermore, the transfer of BMMSCs on the pressure side had positive effects on PDL remodeling and decreased, but did not inhibit, the relapse rate. Finally, the synergistic effects of the application of LLLT and BMMSC were better than the control but still moderate and long-lasting. CLINICAL SIGNIFICANCE: Based on the improved relapse rate as proven in the present study, the Application of both LLLT and stem cells can be adopted to reduce the relapse tendency either lonely or collectively.

2.
Int J Biomater ; 2023: 2411555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122583

RESUMO

Biologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%, 30%, 45%, and 60%, for which the percentages of inhibition of the radial growth were 37.5, 50, 52.5, and 56.25%, respectively. The dual culture method was conducted on PDA medium to observe the antagonistic nature of the antibiotic impacts of Paecilomyces sp. towards the pathogenic fungus. The strength of the antagonistic impacts was manifested by a 76.25% inhibition rate, on a scale of 4 antagonistic levels. Ethyl acetate extract of Paecilomyces sp. was obtained by liquid-liquid partition of the broth containing the fungus. Gas chromatography-mass spectrometry (GC-MS) analysis identified the presence of important chemical components e.g., (E) 9, cis-13-Octadecenoic acid, methyl ester (48.607), 1-Heptacosanol, 1-Nonadecene, Cyclotetracosane (5.979), 1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester, di-sec-butyl phthalate (3.829), 1-Nonadecene, n-Nonadecanol-1, Behenic alcohol (3.298), n-Heptadecanol-1, 1-hexadecanol, n-Pentadecanol (2.962), Dodecanoic acid (2.849), 2,3-Dihydroxypropyl ester, oleic acid, 9-Octadecenal, and (Z)-(2.730). These results suggest that secondary metabolites of the endophytic Paecilomyces possess antifungal properties and could potentially be utilized in various applications, such as environmental protection and medicine.

3.
BMC Plant Biol ; 23(1): 201, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072719

RESUMO

BACKGROUND: Common walnut (Juglans regia L.) has a long cultivation history, given its highly valuable wood and rich nutritious nuts. The Iranian Plateau has been considered as one of the last glaciation refugia and a centre of origin and domestication for the common walnut. However, a prerequisite to conserve or utilize the genetic resources of J. regia in the plateau is a comprehensive evaluation of the genetic diversity that is conspicuously lacking. In this regard, we used 31 polymorphic simple sequence repeat (SSR) markers to delineate the genetic variation and population structure of 508 J. regia individuals among 27 populations from the Iranian Plateau. RESULTS: The SSR markers expressed a high level of genetic diversity (HO = 0.438, and HE = 0.437). Genetic differentiation among the populations was moderate (FST = 0.124), and genetic variation within the populations (79%) significantly surpassed among populations (21%). The gene flow (Nm = 1.840) may have remarkably influenced the population genetic structure of J. regia, which can be attributed to anthropological activities and wind dispersal of pollen. The STRUCTURE analysis divided the 27 populations into two main clusters. Comparing the neighbor-joining and principal coordinate analysis dendrograms and the Bayesian STRUCTURE analysis revealed the general agreement between the population subdivisions and the genetic relationships among the populations. However, a few geographically close populations dispersed into different clusters. Further, the low genetic diversity of the Sulaymaniyah (SMR) population of Iraq necessitates urgent conservation by propagation and seedling management or tissue culture methods; additionally, we recommend the indispensable preservation of the Gonabad (RGR) and Arak (AKR) populations in Iran. CONCLUSIONS: These results reflected consistent high geographical affinity of the accession across the plateau. Our findings suggest that gene flow is a driving factor influencing the genetic structure of J. regia populations, whereas ecological and geological variables did not act as strong barriers. Moreover, the data reported herein provide new insights into the population structure of J. regia germplasm, which will help conserve genetic resources for the future, hence improving walnut breeding programs' efficiency.


Assuntos
Juglans , Juglans/genética , Nozes/genética , Irã (Geográfico) , Teorema de Bayes , Melhoramento Vegetal , Variação Genética
4.
Int J Breast Cancer ; 2023: 3251211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844680

RESUMO

Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Results obtained from MTT assay show cell growth reduction in a time- and dose-dependent aspect; also, in comparison to individual treatment, a synergistic impact was indicated. CAM assay results demonstrated galangin-gold nanoparticle capacity to suppress angiogenesis in chick embryo. Additionally, altering VEGF and ERKI gene expression was recorded. Taken together, all the results can conclude that galangin-conjugated gold nanoparticles can be a promising antiangiogenesis supplemental drug in breast cancer treatment.

5.
J Toxicol ; 2023: 2200539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793583

RESUMO

The heavy metal cadmium is extremely harmful to both humans and animals. Zinc supplementation protects the biological system and reduces cadmium-induced toxicity. This study aimed to determine whether zinc chloride (ZnCl2) could protect male mice with the damaged liver induced by cadmium chloride (CdCl2). The protective role of zinc chloride and expression of the metallothionein (MT), Ki-67, and Bcl-2 apoptotic proteins in hepatocytes were studied after subchronic exposure of mice to cadmium chloride for 21 days. Thirty male mice were randomly categorized into 6 groups (5 mice/group) as follows: a control group that did not receive any treatment, a group given ZnCl2 at 10 mg/kg alone, and two groups received ZnCl2 (10 mg/kg) in combination with CdCl2 at two concentrations (1.5 and 3 mg/kg), while the last two groups received CdCl2 alone at 1.5 and 3 mg/kg, respectively. Immunohistochemical examination revealed a decrease in Ki-67 expression in Kupffer and endothelial cells, which reflected cell proliferation downregulation accompanied by MT increased expression. However, the Bcl-2 was ameliorated and reduced to demonstrate an enhanced rate of necrosis rather than apoptosis. Furthermore, histopathological results showed significant alteration such as hepatocytes with a pyknotic nucleus, infiltration of inflammatory cells around the central vein, and the presence of many binucleated hepatocytes. Zinc chloride treatment resulted in histological and morphological improvements that were average in the expression of apoptosis proteins modifications induced by cadmium. Our findings revealed that the positive effects of zinc might be linked to the high metallothionein expression and enhanced cell proliferation. Furthermore, at low-dose exposure, cadmium-induced damage to cells could be more closely related to necrosis rather than apoptosis.

6.
Artif Cells Nanomed Biotechnol ; 45(6): 1-7, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27534756

RESUMO

Biosynthesis of silver nanoparticles (AgNPs) from Catharanthus roseus leaf extract was carried out, and their characterization, as well as antioxidant, antimicrobial, and wound-healing activities were evaluated. Color change, UV-vis spectrum, XRD, FTIR, and AFM assessments supported the biosynthesis and characterization of AgNPs. The synthesized AgNPs showed strong in vitro antioxidant and antimicrobial activities against various pathogens. The in vivo assessment of wound healing in AgNPs-treated mice revealed their effectiveness in closuring and reducing size of wounds. Such potent bioactivity may justify their biomedical use as antioxidant and antimicrobial agents for controlling various health-related diseases, particularly in wound healing.


Assuntos
Anti-Infecciosos , Antioxidantes , Candida albicans/crescimento & desenvolvimento , Catharanthus/química , Nanopartículas Metálicas , Extratos Vegetais/química , Folhas de Planta/química , Prata , Cicatrização/efeitos dos fármacos , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Prata/química , Prata/farmacologia
7.
FEBS J ; 280(18): 4512-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23809212

RESUMO

The use of hyperoxia for critically ill patients is associated with adverse impacts resulting in lung injury accompanied by inflammation. The aim of this study was to evaluate aspects of mechanisms that contribute to hyperoxia-induced disruption of the epithelial permeability barrier, and also the protective effects of the antioxidants α-tocopherol and ascorbate. 16HBE14o- cells were cultured as monolayers at an air-liquid interface for 6 days, after which transepithelial electrical resistance reached 251.2 ± 4.1 Ω.cm(2) (mean ± standard error of the mean). They were then exposed for 24 h to normoxia (21% O2, 5% CO2), hyperoxia (95% O2, 5% CO2), hyperoxia with 10(-7) M α-tocopherol, hyperoxia with 10(-7) M ascorbate, hyperoxia with 10(-6) M ascorbate, and hyperoxia with a combination of α-tocopherol and ascorbate (10(-7) M and 10(-6) M, respectively). Significant reductions (P < 0.05) in transepithelial electrical resistance seen after hyperoxia (with or without antioxidants) were associated with reductions in the levels of zona occludens-1 (ZO-1) observed by immunohistochemistry, and downregulation of ZO-1 expression (P < 0.01) as compared with normoxia. In contrast, the expression levels of interleukin (IL)-8, IL-6 and tumour necrosis factor-α (TNF-α) were increased after hyperoxia (P < 0.01), and marked increases in the levels of these cytokines (ELISA) were seen in the medium (P < 0.001) as compared with normoxia. The antioxidant vitamins E and C had a partial protective effect against the hyperoxia-induced reduction in ZO-1 levels and the increase in levels of the proinflammatory cytokines IL-8, IL-6, and TNF-α. In conclusion, hyperoxia-induced epithelial disruption is associated with tight junction weakening, and induction of a proinflammatory environment.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Células Epiteliais/efeitos dos fármacos , Hiperóxia/metabolismo , Oxigênio/farmacologia , Vitamina E/farmacologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Impedância Elétrica , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Hiperóxia/genética , Hiperóxia/patologia , Interleucina-6/agonistas , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/agonistas , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/agonistas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína da Zônula de Oclusão-1/antagonistas & inibidores , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
8.
Biochem Biophys Res Commun ; 429(3-4): 191-6, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23142230

RESUMO

Although elevated oxygen fraction is used in intensive care units around the world, pathological changes in pulmonary tissue have been shown to occur with prolonged exposure to hyperoxia. In this work a bovine bronchus culture model has been successfully used to evaluate the effects of hyperoxia on ciliated epithelium in vitro. Samples were cultured using an air interface method and exposed to normoxia, 21% O(2) or hyperoxia, 95% O(2). Cilial coverage was assessed using scanning electron microscopy (SEM). Tissue damage (lactate dehydrogenase, LDH, in the medium), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), DNA damage (comet assay), protein oxidation (OxyBlot kit) and antioxidant status (total glutathione) were used to assess whether the hyperoxia caused significant oxidative stress. Hyperoxia caused a time-dependent decline (t(½)=3.4d compared to 37.1d under normoxia) in cilial coverage (P<0.0001). This was associated with a significant increase in the number of cells (2.80 ± 0.27 × 10(6) compared to 1.97 ± 0.23 × 10(6)ml(-1) after 6d), many apparently intact, in the medium (P<0.05); LDH release (1.06 ± 0.29 compared to 0.83 ± 0.36 µmol min(-1)g(-1) after 6d; P<0.001); lipid peroxidation (352 ± 16 versus 247 ± 11 µmol MDA g(-1) for hyperoxia and normoxia, respectively); % tail DNA (18.7 ± 2.2 versus 11.1 ± 1.5); protein carbonyls (P<0.05); and total glutathione (229 ± 20 µmol g(-1) versus 189 ± 15 µmol g(-1)). Vitamins E (10(-7)M) and C (10(-6) or 10(-7)M) alone or in combination (10(-7)M and 10(-6)M, respectively) had a significant protective effect on the hyperoxia-induced reduction in percentage cilial coverage (P<0.05). In conclusion, hyperoxia caused damage to cultured bovine bronchial epithelium and denudation of cilia. The antioxidant vitamins E and C significantly protected against hyperoxia-induced cilia loss.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Citoproteção , Hiperóxia/patologia , Estresse Oxidativo/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Vitamina E/farmacologia , Animais , Brônquios/efeitos dos fármacos , Brônquios/enzimologia , Brônquios/patologia , Bovinos , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/patologia , Dano ao DNA , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos , Mucosa Respiratória/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...