Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 130615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538375

RESUMO

A green hybridized structure of Fe0 painted chitosan/cellulose base (Fe0@CS/CF) has been developed using cellulose extracted from sugarcane bagasse along with reduction agents sourced from Khaya senegalensis leaves. The composite was assessed as an affordable, powerful, and multifunctional catalyst for enhancing the degradation of Levofloxacin (LVX) remnants within water supplies via photo-Fenton's interactions. Using a dosage of 0.5 g/L, the Fe0@CS/CF blend demonstrated noteworthy catalytic qualities, resulting in the complete photo-Fenton's degradation of LVX at a level of 25 mg/L after 40 min. However, the complete diminution of organic carbon (TOC) occurred only after 100 min, suggesting the presence of significant intermediate residues. The identified intermediate chemicals and confirmed hydroxyl radicals as the main oxidizer suggest that the degradation pathway involves carboxylation/decarboxylation, hydroxylation, demethylation, and oxidation of quinolone rings. The toxicity properties of untreated LVX solutions and their subsequent oxidized byproducts were assessed by evaluating their inhibiting impact on Vibrio fischeri over various durations. The samples that experienced partial oxidation at initial testing demonstrated a higher level of toxicity in comparison to the parent LVX. However, the sample that was treated for 100 min demonstrated substantial biological safety and a non-toxic nature. The blend of ingredients has a synergistic impact that enhances the uptake, Fenton's, photocatalytic, and photo-Fenton's characteristics of the hosted Fe0 nanoparticles.


Assuntos
Quitosana , Saccharum , Levofloxacino , Celulose , Peróxido de Hidrogênio/química , Oxirredução
2.
ACS Omega ; 8(41): 38330-38344, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867674

RESUMO

The current work involves the modification of diatomite's biosiliceous frustules employing chitosan polymer chains (CS/Di) to serve as low-cost, biocompatible, multifunctional, and enhanced pharmaceutical delivery systems for 5-fluorouracil (5-Fu) together with oxaliplatin (OXPL). The CS/Di carrier displayed strong loading characteristics, notably at saturation (249.17 mg/g (OXPL) and 267.6 mg/g (5-Fu)), demonstrating a substantial 5-Fu affinity. The loading of the two types of medications onto CS/Di was conducted based on the kinetic behaviors of the conventional pseudo-first-order theory (R2 > 0.90). However, while the loading of OXPL follows the isotherm assumptions of the classic Langmuir model (R2 = 0.99), the loading of 5-Fu displays Fruendlich isotherm properties. Therefore, the 5-Fu loading displayed physical, heterogeneous, and multilayer loading properties, whereas the loading of OXPL occurred in homogeneous and monolayer form. The densities of occupied active sites of CS/Di were 37.19 and 32.8 mg/g for the sequestrations of OXPL and 5-Fu, respectively. Furthermore, by means of multimolecular processes, each loading site of CS/Di can bind up to 8 molecules of OXPL and 9 molecules of 5-Fu in a vertical orientation. This observation explains the higher loading capacities of 5-Fu in comparison to OXPL. The loading energies, which exhibit values <40 kJ/mol, provide confirmation of the dominant and significant consequences of physical processes as the regulating mechanisms. The release patterns of OXPL and 5-Fu demonstrate prolonged features over a duration of up to 120 h. The release kinetic simulation and diffusion exponents which are more than 0.45 provide evidence of the release of OXP and 5-Fu via non-Fickian transportation characteristics and the erosion/diffusion mechanism. The CS/Di carrier exhibited a substantial enhancement in the cytotoxicity of OXPL and 5-Fu against HCT-116 carcinoma cell lines, resulting in a reduction in cell viability by 4.61 and 2.26% respectively.

3.
RSC Adv ; 13(24): 16327-16341, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37266494

RESUMO

Natural phillipsite (N.Ph) was hybridized with cellulose fibers to produce a safe biocomposite (CF/N.Ph) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy during the treatment stages of colorectal cancer cells. The requirements of CF/N.Ph as a carrier for OXPN were followed based on the loading, release, and cytotoxicity compared to N.Ph. CF/N.Ph composite exhibits a notably higher OXPN encapsulation capacity (311.03 mg g-1) than the N.Ph phase (79.6 mg g-1). The OXPN encapsulation processes into CF/N.Ph display the isotherm behavior of the Freundlich model (R2 = 0.99) and the kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 100.01 mg g-1) compared to pure N.Ph (Nm = 27.94 mg g-1). Additionally, the capacity of each site was enhanced to be loaded by 4 OXPN molecules (n = 3.11) compared to 3 by N.Ph (n = 2.85) in a vertical orientation. The OXPN encapsulation energy into CF/N.Ph (<40 kJ mol-1) reflects physical encapsulation reactions involving electrostatic attraction, van der Waals forces, and hydrogen bonding. The OXPN release profiles of CF/N.Ph exhibit slow and controlled properties for about 150 h either at pH 5.5 or at pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/N.Ph particles display a considerable cytotoxic effect on HCT-116 cancer cells (46.91% cell viability), and its OXPN-loaded product shows a strong cytotoxic effect (3.14% cell viability).

4.
Int J Biol Macromol ; 235: 123825, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36828091

RESUMO

Natural diatomite frustules (D) were incorporated in zeolitization and cellulose functionalization processes to obtain zeolitized diatomite (ZD) and cellulose fibrous/zeolitized diatomite composite (CF/ZD). The modified products were assessed as potential carriers of oxaliplatin drug (OXPL) with enhanced properties. The prepared ZD (112.5 mg/g) and CF/ZD (268.3 mg/g) structures exhibit significantly enhanced encapsulation capacities as compared to raw diatomite (65.9 mg/g). The occurred encapsulation reactions follow the classic Pseudo-first order kinetic (R2 > 0.93) and traditional Langmuir isotherm (R2 = 0.99). The estimated effective encapsulation site density of CF/ZD is 104.8 mg/g which is a notably higher value than ZD (44.6 mg/g) and D (28.4 mg/g). Moreover, each effective site can be occupied with up to 3 molecules of OXPL molecules in vertical forms involving multi-molecular mechanisms. The encapsulation energy (<40 KJ/mol) suggested the predominant effects of the physical mechanisms during the encapsulation reactions. The release profiles of ZD as well as CF/ZD exhibit slow and controlled properties for about 100 h either at pH 5.5 or at pH 7.4. The release kinetic studies involving the obtained diffusion exponent values (>0.45) suggested non-Fickian transport and complex erosion/diffusion release mechanism. These structures exhibit enhanced cytotoxic effects on the HCT-116 cancer cell lines (D (18.78 % cell viability), ZD (9.76 % cell viability), and CF/ZD (3.16 % cell viability).


Assuntos
Celulose , Zeolitas , Humanos , Oxaliplatina/farmacologia , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...