Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 10(12): 912, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801952

RESUMO

Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide, with overall survival of less than 50%. Current therapeutic strategies involving a combination of surgery, radiation, and/or chemotherapy are associated with debilitating side effects, highlighting the need for more specific and efficacious therapies. Inhibitors of BCL-2 family proteins (BH3 mimetics) are under investigation or in clinical practice for several hematological malignancies and show promise in solid tumors. In order to explore the therapeutic potential of BH3 mimetics in the treatment of SCCHN, we assessed the expression levels of BCL-2, BCL-XL, and MCL-1 via Western blots and immunohistochemistry, in cell lines, primary cells derived from SCCHN patients and in tissue microarrays containing tumor tissue from a cohort of 191 SCCHN patients. All preclinical models exhibited moderate to high levels of BCL-XL and MCL-1, with little or no BCL-2. Although expression levels of BCL-XL and MCL-1 did not correlate with patient outcome, a combination of BH3 mimetics to target these proteins resulted in decreased clonogenic potential and enhanced apoptosis in all preclinical models, including tumor tissue resected from patients, as well as a reduction of tumor volume in a zebrafish xenograft model of SCCHN. Our results show that SCCHN is dependent on both BCL-XL and MCL-1 for apoptosis evasion and combination therapy targeting both proteins may offer significant therapeutic benefits in this disease.


Assuntos
Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
2.
Cell Death Discov ; 5: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341643

RESUMO

Maintenance of mitochondrial integrity is critical for normal cellular homoeostasis. Most cells respond to stress stimuli and undergo apoptosis by perturbing mitochondrial structure and function to release proteins, such as cytochrome c, which are essential for the execution of the intrinsic apoptotic cascade. Cancer cells evade these events by overexpressing the anti-apoptotic BCL-2 family of proteins on mitochondrial membranes. Inhibitors of the anti-apoptotic BCL-2 family proteins, also known as BH3 mimetics, antagonise the pro-survival functions of these proteins and result in rapid apoptosis. Although the precise mechanism by which BH3 mimetics induce apoptosis has been well characterised, not much is known in terms of the structural changes that occur in mitochondria during apoptosis. Using a panel of highly selective BH3 mimetics and a wide range of cell lines, we demonstrate that BH3 mimetics induce extensive mitochondrial fission, accompanied by swelling of the mitochondrial matrix and rupture of the outer mitochondrial membrane. These changes occur in a BAX/ BAK-dependent manner. Although a major mitochondrial fission GTPase, DRP-1, has been implicated in mitochondrial apoptosis, our data demonstrate that DRP-1 might function independently/downstream of BH3 mimetic-mediated mitochondrial fission to facilitate the release of cytochrome c and apoptosis. Moreover, downregulation of DRP-1 prevented cytochrome c release and apoptosis even when OPA1, a protein mediating mitochondrial fusion, was silenced. Although BH3 mimetic-mediated displacement of BAK and other BH3-only proteins from BCL-XL and MCL-1 was unaffected by DRP-1 downregulation, it prevented BAK activation significantly, thus placing DRP-1 as one of the most critical players, along with BAX and BAK, that governs BH3 mimetic-mediated cytochrome c release and apoptosis.

3.
Biol Chem ; 400(2): 181-185, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29924730

RESUMO

Induction of apoptosis by selective BH3-mimetics is currently investigated as a novel strategy for cancer treatment. Here, we report that selective BH3-mimetics induce apoptosis in a variety of hematological malignancies. Apoptosis is accompanied by severe mitochondrial toxicities upstream of caspase activation. Specifically, the selective BH3-mimetics ABT-199, A-1331852 and S63845, which target BCL-2, BCL-XL and MCL-1, respectively, induce comparable ultrastructural changes including mitochondrial swelling, a decrease of mitochondrial matrix density and severe loss of cristae structure. These shared effects on mitochondrial morphology indicate a similar function of these anti-apoptotic BCL-2 proteins in maintaining mitochondrial integrity and function.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mimetismo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteína bcl-X/efeitos dos fármacos , Apoptose , Caspases/metabolismo , Ativação Enzimática , Humanos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
4.
Haematologica ; 104(5): 1016-1025, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30467206

RESUMO

BH3 mimetics are novel targeted drugs with remarkable specificity, potency and enormous potential to improve cancer therapy. However, acquired resistance is an emerging problem. We report the rapid development of resistance in chronic lymphocytic leukemia cells isolated from patients exposed to increasing doses of navitoclax (ABT-263), a BH3 mimetic. To mimic such rapid development of chemoresistance, we developed simple resistance models to three different BH3 mimetics, targeting BCL-2 (ABT-199), BCL-XL (A-1331852) or MCL-1 (A-1210477), in relevant hematologic cancer cell lines. In these models, resistance could not be attributed to either consistent changes in expression levels of the anti-apoptotic proteins or interactions among different pro- and anti-apoptotic BCL-2 family members. Using genetic silencing, pharmacological inhibition and metabolic supplementation, we found that targeting glutamine uptake and its downstream signaling pathways, namely glutaminolysis, reductive carboxylation, lipogenesis, cholesterogenesis and mammalian target of rapamycin signaling resulted in marked sensitization of the chemoresistant cells to BH3 mimetic-mediated apoptosis. Furthermore, our findings highlight the possibility of repurposing widely used drugs, such as statins, to target intermediary metabolism and improve the efficacy of BH3 mimetic therapy.


Assuntos
Antineoplásicos/farmacologia , Biomimética , Resistencia a Medicamentos Antineoplásicos , Glutamina/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Benzotiazóis/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Colesterol/biossíntese , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Indóis/farmacologia , Isoquinolinas/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Lipogênese/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas , Proteína bcl-X/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...