Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2910, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614062

RESUMO

Cation exchanged-zeolites are functional materials with a wide range of applications from catalysis to sorbents. They present a challenge for computational studies using density functional theory due to the numerous possible active sites. From Al configuration, to placement of extra framework cation(s), to potentially different oxidation states of the cation, accounting for all these possibilities is not trivial. To make the number of calculations more tractable, most studies focus on a few active sites. We attempt to go beyond these limitations by implementing a workflow for a high throughput screening, designed to systematize the problem and exhaustively search for feasible active sites. We use Pd-exchanged CHA and BEA to illustrate the approach. After conducting thousands of explicit DFT calculations, we identify the sites most favorable for the Pd cation and discuss the results in detail. The high throughput screening identifies many energetically favorable sites that are non-trivial. Lastly, we employ these results to examine NO adsorption in Pd-exchanged CHA, which is a promising passive NOx adsorbent (PNA) during the cold start of automobiles. The results shed light on critical active sites for NOx capture that were not previously studied.

2.
Proc Natl Acad Sci U S A ; 117(26): 14721-14729, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554500

RESUMO

Supported metal catalysts are extensively used in industrial and environmental applications. To improve their performance, it is crucial to identify the most active sites. This identification is, however, made challenging by the presence of a large number of potential surface structures that complicate such an assignment. Often, the active site is formed by an ensemble of atoms, thus introducing further complications in its identification. Being able to produce uniform structures and identify the ones that are responsible for the catalyst performance is a crucial goal. In this work, we utilize a combination of uniform Pd/Pt nanocrystal catalysts and theory to reveal the catalytic active-site ensemble in highly active propene combustion materials. Using colloidal chemistry to exquisitely control nanoparticle size, we find that intrinsic rates for propene combustion in the presence of water increase monotonically with particle size on Pt-rich catalysts, suggesting that the reaction is structure dependent. We also reveal that water has a near-zero or mildly positive reaction rate order over Pd/Pt catalysts. Theory insights allow us to determine that the interaction of water with extended terraces present in large particles leads to the formation of step sites on metallic surfaces. These specific step-edge sites are responsible for the efficient combustion of propene at low temperature. This work reveals an elusive geometric ensemble, thus clearly identifying the active site in alkene combustion catalysts. These insights demonstrate how the combination of uniform catalysts and theory can provide a much deeper understanding of active-site geometry for many applications.

3.
Phys Chem Chem Phys ; 21(45): 25328-25333, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701972

RESUMO

The search for catalysts that can efficiently convert large hydrocarbons has been an active area of research for decades. To gain insight into those reactions, electronic structure calculations are playing an increasing role but the screening efforts are impeded by the complexity of the reaction networks that can contain hundreds of elementary steps, presenting a large number of computationally expensive transition state barrier calculations. A large number of the sub reactions in the network involve C-C bond dissociation, a step that has been identified as rate determining in many studies. The purpose of this article is to present a methodology that allows for accurate and rapid assessment of transition state energies for C-C bond breaking in any hydrocarbon based on a small number of simple calculations. Our model significantly enhances the capability of expanding the search space for new and efficient catalysts.

4.
Inorg Chem ; 57(12): 7222-7238, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863849

RESUMO

We investigate the (surface) bonding of a class of industrially and biologically important molecules in which the chemically active orbital is a 2 p electron lone pair located on an N or O atom bound via single bonds to H or alkyl groups. This class includes water, ammonia, alcohols, ethers, and amines. Using extensive density functional theory (DFT) calculations, we discover scaling relations (correlations) among molecular binding energies of different members of this class: the bonding energetics of a single member can be used as a descriptor for other members. We investigate the bonding mechanism for a representative (H2O) and find the most important physical surface properties that dictate the strength and nature of the bonding through a combination of covalent and noncovalent electrostatic effects. We describe the importance of surface intrinsic electrostatic, geometric, and mechanical properties in determining the extent of the lone-pair-surface interactions. We study systems including ionic materials in which the surface positive and negative centers create strong local surface electric fields, which polarize the dangling lone pair and lead to a strong "electrostatically driven bond". We emphasize the importance of noncovalent electrostatic effects and discuss why a fully covalent picture, common in the current first-principles literature on surface bonding of these molecules, is not adequate to correctly describe the bonding mechanism and energy trends. By pointing out a completely different mechanism (charge transfer) as the major factor for binding N- and O-containing unsaturated (radical) adsorbates, we explain why their binding energies can be tuned independently from those of the aforementioned species, having potential implications in scaling-driven catalyst discovery.

5.
Phys Chem Chem Phys ; 19(5): 3575-3581, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094377

RESUMO

While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. This model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

6.
Nat Mater ; 16(2): 225-229, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723737

RESUMO

While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

7.
Langmuir ; 32(19): 4862-7, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27124089

RESUMO

We develop a reversible colloidal system of silica nanoparticles whose state of aggregation is controlled reproducibly from a state of fully dispersed nanoparticles to that of a colloidal gel and back. The surface of silica nanoparticles is coated with various amino silanes to identify a silane capable of forming a monolayer on the surface of the particles without causing irreversible aggregation. Of the three silanes used in this study, N-[3-(trimethoxysilyl)propyl]ethylenediamine was found to be capable of producing monolayers up to full surface coverage without inducing irreversible aggregation of the nanoparticles. At near full surface coverage the electrokinetic behavior of the functionalized silica is completely determined by that of the aminosilane. At acidic pH the ionization of the amino groups provides electrosteric stabilization and the system is fully dispersed. At basic pH, the dispersion state is dominated by the hydrophobic interaction between the uncharged aminosilane chains in the aqueous environment and the system forms a colloidal gel. At intermediate pH values the dispersion state is dominated by the balance between electrostatic and hydrophobic interactions, and the system exists in clusters whose size is determined solely by the pH. The transformation between states of aggregation is reversible and a reproducible function of pH. The rate of gelation can be controlled to be as fast as minutes while deaggregation is much slower and takes several hours to complete.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...