Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0290124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878553

RESUMO

In this study, we characterize the distribution of airborne viruses (influenza A/B) in hospital rooms of patients with confirmed infections. Concurrently, we monitored fine particulate matter (PM2.5 & PM10) and several physical parameters including the room air exchange rate, temperature, and relative humidity to identify corresponding correlations with virus transport and removal determinants. The results continue to raise concerns about indoor air quality (IAQ) in healthcare facilities and the potential exposure of patients, staff and visitors to aerosolized viruses as well as elevated indoor PM levels caused by outdoor sources and/or re-suspension of settled particles by indoor activities. The influenza A virus was detected in 42% of 33 monitored rooms, with viruses detectible up to 1.5 m away from the infected patient. Active coughing was a statistically significant variable that contributed to a higher positive rate of virus detection in the collected air samples. Viral load across patient rooms ranged between 222 and 5,760 copies/m3, with a mean of 820 copies/m3. Measured PM2.5 and PM10 levels exceeded IAQ daily exposure guidelines in most monitored rooms. Statistical and numerical analyses showed that dispersion was the dominant viral removal pathway followed by settling. Changes in the relative humidity and the room's temperature were had a significant impact on the viral load removal. In closure, we highlight the need for an integrated approach to control determinants of IAQ in patients' rooms.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Influenza Humana , Orthomyxoviridae , Humanos , Poluentes Atmosféricos/análise , Influenza Humana/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos
2.
BMC Med Genomics ; 16(1): 14, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707851

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 variants including the Delta and Omicron along with waning of vaccine-induced immunity over time contributed to increased rates of breakthrough infection specifically among healthcare workers (HCWs). SARS-CoV-2 genomic surveillance is an important tool for timely detection and characterization of circulating variants as well as monitoring the emergence of new strains. Our study is the first national SARS-CoV-2 genomic surveillance among HCWs in Lebanon. METHODS: We collected 250 nasopharyngeal swabs from HCWs across Lebanon between December 2021 and January 2022. Data on the date of positive PCR, vaccination status, specific occupation, and hospitalization status of participants were collected. Extracted viral RNA from nasopharyngeal swabs was converted to cDNA, library prepped using the coronaHIT method, followed by whole genome sequencing on the Illumina NextSeq 500 platform. RESULTS: A total of 133 (57.1%) samples belonging to the Omicron (BA.1.1) sub-lineage were identified, as well as 44 (18.9%) samples belonging to the BA.1 sub-lineage, 28 (12%) belonging to the BA.2 sub-lineage, and only 15 (6.6%) samples belonging to the Delta variant sub-lineage B.1.617.2. These results show that Lebanon followed the global trend in terms of circulating SARS-CoV-2 variants with Delta rapidly replaced by the Omicron variant. CONCLUSION: This study underscores the importance of continuous genomic surveillance programs in Lebanon for the timely detection and characterization of circulating variants. The latter is critical to guide public health policy making and to timely implement public health interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Líbano/epidemiologia , Genômica , Pessoal de Saúde
3.
Infect Genet Evol ; 105: 105367, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115643

RESUMO

Acute gastroenteritis (AGE) is associated with significant global morbidity and mortality, especially among children under five years of age. Viruses are well established as etiologic agents of gastroenteritis since they are the most common pathogens that contribute to the disease burden in developing countries. Despite the advances in molecular diagnosis, a substantial proportion of AGE etiology remain unresolved. We implemented a viral metagenomics pipeline to determine the potential viral etiology associated with AGE among children under the age of five years in Qatar with undiagnosed etiology. Following enriching for the viral genome, ∼1.3 billion sequences were generated from 89 stool specimens using the Illumina HiSeq platform, of which 7% were mapped to viral genomes. Human viruses were detected in 34 specimens (38.2%); 14 were adenovirus, nine coxsackievirus A16, five rotavirus (G9P[8] and G4P[8]), four norovirus (GII), one influenza A virus (H3), and one respiratory syncytial virus A (RSVA). In conclusion, the viral metagenomics approach is useful for determining AGE's etiology when routine molecular diagnostic assays fail.


Assuntos
Gastroenterite , Rotavirus , Vírus , Humanos , Criança , Lactente , Pré-Escolar , Catar/epidemiologia , Fezes , Gastroenterite/diagnóstico , Gastroenterite/epidemiologia , Rotavirus/genética , Vírus/genética
5.
Front Pharmacol ; 11: 1196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848795

RESUMO

Since its emergence in China in December 2019, COVID-19 has quickly spread around the globe causing a pandemic. Vaccination or the development of herd immunity seems the only way to slow down the spread of the virus; however, both are not achievable in the near future. Therefore, effective treatments to mitigate the burden of this pandemic and reduce mortality rates are urgently needed. Preclinical and clinical studies of potential antiviral and immunomodulatory compounds and molecules to identify safe and efficacious therapeutics for COVID-19 are ongoing. Two compounds, remdesivir, and dexamethasone have been so far shown to reduce COVID-19-associated death. Here, we provide a review of the potential therapeutic agents being considered for the treatment and management of COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...