Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513929

RESUMO

This study describes the synthesis and biological activity of new imadazopyrazines as first-in-class CDK9 inhibitors. The inhibition of CDK9 is a well-established therapeutic target in cancer therapy. The new compounds were assessed using an in vitro kinase assay against CDK9. In this assay, compound 1d exhibited the highest CDK9 inhibition with an IC50 of 0.18 µM. The cytotoxicity effect of the novel compounds was evaluated in three cancer cell lines: HCT116, K652, and MCF7. The results of this assay showed a correlation between the antiproliferative effect of the inhibitors and their CDK9 inhibitory effect in the biochemical assay. This suggests CDK9 inhibition as a mechanistic pathway for their anticancer effect. Several compounds demonstrated potent cytotoxic effects with single-digit micromolar IC50 values yielded through an MTT assay. The compounds with the most promising data were further assessed for their antiviral activity against human Coronavirus 229E. The results showed that compound 4a showed the highest antiviral potency with an IC50 of 63.28 µM and a selectivity index of 4.8. In silico target prediction data showed that 4a displayed a good affinity to proteases. The result of the docking studies of 4a with COVID-19 main protease revealed a high binding affinity, which confirmed the results obtained from in vitro study. The physiochemical and in silico pharmacokinetic parameters indicated reasonable drug-likeness properties of the new compounds, including solubility, lipophilicity, absorption, oral bioavailability, and metabolic stability. Further lead optimization of this novel scaffold could lead to a revolution of a new class of preclinical CDK9 agents.

2.
Arch Pharm (Weinheim) ; 354(4): e2000351, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33252142

RESUMO

Novel derivatives of the pyrazoline scaffold were synthesized and investigated for their cytotoxicity against prostate (PC-3), hepatocellular (HepG2), and breast (MDA-MB-231) carcinoma cells. The most active compounds, 4a, 4b, 5b, and 7c, revealed significant and broad-spectrum anticancer activities with IC50 values of 1.30-7.18 µM in comparison with doxorubicin (IC50 = 5.12-7.33 µM). Additionally, they exhibited lower cytotoxicity against normal WI-38 cells, indicating their high safety profiles. Aiming to enlighten the inhibitory potential on receptor tyrosine kinases (RTKs), compounds 4a, 4b, 5b, and 7c were assessed for their activities against four different RTKs (EGFR, FGFR2, HER2, and VEGFR2) and their apoptotic potencies on PC-3 cells. The results revealed that compounds 5b and 7c are potent dual EGFR and VEGFR2 inhibitors (IC50 = 0.21 and 0.23 µM, respectively, against EGFR; 0.22 and 0.21 µM, respectively, against VEGFR2), whereas they displayed moderate inhibitory activities against HER2 and FGFR2. Besides, compounds 4a, 4b, 5b, and 7c prompted apoptosis via the upregulation of Bax, p53, and caspase-3, together with the downregulation of the levels of Bcl-2. Also, it was found that compounds 5b and 7c are more potent as apoptosis inducers than the other tested derivatives. Furthermore, molecular docking analyses of compounds 4a, 4b, 5b, and 7c in the EGFR and VEGFR ATP binding sites were performed, to confirm the in vitro assays.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...