Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 95(11): e10942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872103

RESUMO

The ceramic filter amended with iron (Fe) has proven to be a potential low-cost method for arsenic (As) removal from groundwater. The presence of Fe, phosphate (P), and silicate (Si) significantly affects the As removal efficiency of the ceramic filter, which has not been passably investigated. The present research aimed to examine the effect of Fe, P, and (or) Si presence as single or in combination on As (III) removal from synthetics groundwater by a low-cost iron amended ceramic filter (IACF). Laboratory-scale filtration experiments at different compositions of Fe, P, Si, and As (III) were conducted by the IACF fabricated with a ceramic candle and iron netting box. Fe (II) in synthetic groundwater positively impacted As (III) removal. At a concentration of 2 mg/L of Fe (II), the As levels in the effluent decreased to less than the maximum contamination level (MCL) of 50 µg/L. Groundwater P concentration needed less than 3 mg/L or Si concentrations required less than 35 mg/L to effectively reduce As (III) to below the MCL at 5 mg/L of groundwater Fe (II). The cumulative effect of P and Si on As removal was found to be more significant than distinct contributions. The presence of 2 mg/L P and 35 mg/L or higher Si in the groundwater cumulatively reduced the As removal performance from 92% to 63%, and the MCL was not met. The negative impact of P and Si on As (III) removal followed the order of (P + Si) > P > Si. P competed with As for adsorption sites during the process, while Si inhibited the Fe release and floc formation, significantly reducing As removal performance. The study findings can potentially contribute to optimizing IACF as a low-cost method for As removal from groundwater.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Ferro , Fosfatos , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Silicatos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35742631

RESUMO

Extensive construction augmenting the infrastructure and real estate projects underpin Saudi Arabia's Vision 2030 of sustainable cities. A part of this struggle involves the transformation of the existing infrastructure together with new construction, which generates a large amount of construction and demolition waste (CDW). In the absence of a structured life cycle assessment (LCA) framework, the waste management companies are planning future scenarios (phased expansions of material recovery facilities to improve the recycling rate) primarily on economic grounds. This study assesses the environmental impacts of the existing and planned CDW management practices of the Saudi Investment Recycling Company in Riyadh City by dint of LCA. Impact 2002+ performs life cycle impact assessment of the base case (45% recycling), four treatments (61, 76, 88, and 100% recycling), and zero waste scenarios. The study demonstrates the benefits of current CDW (mixed soil, concrete blocks, clay bricks, glazed tiles, and asphalt) recycling in terms of avoided impacts of non-renewable energy, global warming, carcinogens, non-carcinogens, and respiratory inorganics potentially generated by landfilling. For the treatment scenario of 100% recycling, CDW conversion into a wide range of aggregates (0-50 mm) can replace 10-100% virgin aggregates in backfilling, precast concrete manufacturing, encasements and beddings of water mains and sewers, manholes construction, non-load bearing walls, and farm-to-market roads. To achieve long-term economic and environmental sustainability, municipalities need to improve source segregation, handling, and storage practices to enhance the existing (45%) recycling rate to 100% in the next five years and approach the zero-waste scenario by 2030. The findings of the present study motivate the generators for source reduction as well as encourage the recycling companies and concerned organizations in the continuous performance improvement of the CDW management systems across Saudi Arabia on environmental grounds, as an addition to the perceived economic benefits.


Assuntos
Indústria da Construção , Gerenciamento de Resíduos , Animais , Materiais de Construção , Resíduos Industriais , Estágios do Ciclo de Vida , Reciclagem , Arábia Saudita
3.
Environ Manage ; 67(2): 324-341, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410919

RESUMO

Water utilities in arid regions deal with multifaceted issues of natural groundwater contamination, high treatment costs, and low water rates. These utilities rely on intermittent supplies resulting in numerous water quality failures at source, treatment, distribution, and in-house plumbing systems. The present research presents an inclusive risk assessment methodology for managing water quality from source to tap. Three-year monitoring data for turbidity, TDS, pH, iron, ammonia, nitrates, residual chlorine, Coliform group, E. coli, and Fecal Streptococci identified the root causes of failures. The cause-effect relationships in the form of a fault tree were solved using multiple failure modes and effect analysis (FMEA) to handle both the Boolean operations. The fuzzy sets addressed the uncertainties associated with data limitations in calculating exceedance probabilities (Pe) and vagueness in expert opinion for subjective evaluation of severity and detectability. The methodology was applied on a smaller system serving 18,000 consumers in Qassim, Saudi Arabia. Potable supplied water underwent reoccurrence of TDS (Pe = 20%), turbidity (Pe = 10%), and Fe (Pe = 2%) failures in distribution that further increased up to 44%, 33%, and 11% at the consumer end. The Pe for residual chlorine failure soared up to 89%. Economic controls reduced the cumulative risk to 50%, while the shift to continuous supply can limit the remaining failures under the acceptable risk. The framework will help utilities manage water quality in intermittent systems from source to tap in Saudi Arabia, the Gulf, and elsewhere.


Assuntos
Água Potável , Abastecimento de Água , Escherichia coli , Medição de Risco , Qualidade da Água
4.
Environ Sci Pollut Res Int ; 27(15): 18287-18302, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32185731

RESUMO

Dissolved organic matter (DOM) has been recognized as a serious water quality problem in natural water bodies receiving pollution loads from point and nonpoint sources. The present study investigates the spatiotemporal variability of DOM composition in the Kushiro River and its tributaries (Eastern Hokkaido, Japan) impacted by the Kushiro wetland. Water samples were collected in the wet and dry seasons from several locations of the river and analyzed for DOM characteristics by UV-visible and excitation-emission matrix fluorescence spectroscopy techniques and by developing water quality index. Rather than the spatial effect, significant seasonal impacts on DOM pollution in the Kushiro River were observed. Overall concentrations of DOM decreased during the dry season. The increase of specific ultraviolet absorbance in the dry season indicated an increasing trend of humification, aromaticity and molecular weight of DOM. Five fluorescent peaks, including peaks A, C, M, B, and T were predicted by EEM spectra. Peaks A and C were found to be the most dominating peaks in both the seasons and indicated enrichment of humic-like matters in river water. The intensities of poly-aromatic humic substances as well as DOM components of microbial origin increase in the wet season and proteins like autochthonous DOM increase during the dry season. The study recognized the contribution of freshly produced DOM component by the decomposition of wetland plants in wet season and effect of snowfall in the dry season. Analysis of three fluorescence indices revealed that the river water primarily contains terrestrially dominated DOM. A significant impact of the adjacent WWTPs and wetland to the river water DOM were also observed. The water quality index of river water DOM showed low to medium levels of DOM pollution in the Kushiro River.


Assuntos
Rios , Áreas Alagadas , Substâncias Húmicas/análise , Japão , Espectrometria de Fluorescência , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...