Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BDJ Open ; 9(1): 26, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414765

RESUMO

OBJECTIVES: There is a significant apprehension in medicine and dentistry concerning the emergence of antibiotic-resistant pathogens, as it composes a significant threat to global health, particularly oral health. The growing concern that oral pathogens may develop resistance against standard preventive measures raises the need for alternative measures to prevent these pathogens' growth without inducing microbial resistance. Therefore, this study aims to assess the antibacterial properties of eucalyptus oil (EO) against two main oral disease pathogens, Streptococcus mutans, and Enterococci faecalis. METHODS: S. mutans and E. faecalis biofilms were initiated using brain-heart infusion (BHI) broth supplemented with 2% sucrose with and without diluted EO. After 24 h of biofilm formation, total absorbance was measured via spectrophotometer; then, the biofilm was fixed, stained with crystal violet dye, and measured at 490 nm. An Independent t-test was used to compare the outcomes. RESULTS: Diluted EO revealed significant total absorbance reduction against S. mutans and E. faecalis compared to the control (p ≤ 0.001). For the biofilm measurement, S. mutans and E. faecalis biofilms were reduced by around 60- and 30-fold, respectively, compared to the group with no EO (p ≤ 0.001). CONCLUSION: Based on this study's results, using EO as an organic compound could be considered an adjunctive tool in preventing the growth of oral pathogens causing dental caries and endodontic infection.

3.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176004

RESUMO

Secondary caries is one of the leading causes of resin-based dental restoration failure. It is initiated at the interface of an existing restoration and the restored tooth surface. It is mainly caused by an imbalance between two processes of mineral loss (demineralization) and mineral gain (remineralization). A plethora of evidence has explored incorporating several bioactive compounds into resin-based materials to prevent bacterial biofilm attachment and the onset of the disease. In this review, the most recent advances in the design of remineralizing compounds and their functionalization to different resin-based materials' formulations were overviewed. Inorganic compounds, such as nano-sized amorphous calcium phosphate (NACP), calcium fluoride (CaF2), bioactive glass (BAG), hydroxyapatite (HA), fluorapatite (FA), and boron nitride (BN), displayed promising results concerning remineralization, and direct and indirect impact on biofilm growth. The effects of these compounds varied based on these compounds' structure, the incorporated amount or percentage, and the intended clinical application. The remineralizing effects were presented as direct effects, such as an increase in the mineral content of the dental tissue, or indirect effects, such as an increase in the pH around the material. In some of the reported investigations, inorganic remineralizing compounds were combined with other bioactive agents, such as quaternary ammonium compounds (QACs), to maximize the remineralization outcomes and the antibacterial action against the cariogenic biofilms. The reviewed literature was mainly based on laboratory studies, highlighting the need to shift more toward testing the performance of these remineralizing compounds in clinical settings.


Assuntos
Cárie Dentária , Metacrilatos , Humanos , Metacrilatos/química , Fosfatos de Cálcio/química , Compostos de Amônio Quaternário/farmacologia , Biofilmes , Minerais/farmacologia , Resinas Vegetais , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Antibacterianos/farmacologia , Materiais Dentários/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...