Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260501

RESUMO

The Darcy-scale properties of reservoir rocks, such as capillary pressure and relative permeability, are controlled by multiphase flow properties at the pore scale. In the present paper, we implement a volume of fluid (VOF) method coupled with a physically based dynamic contact angle to perform pore-scale simulation of two-phase flow within a porous medium. The numerical model is based on the resolution of the Navier-Stokes equations as well as a phase fraction equation incorporating a dynamic contact angle model with wetting hysteresis effect. After the model is validated for a single phase, a two-phase flow simulation is performed on both a Newtonian and a non-Newtonian fluid; the latter consists of a polymer solution displaying a shear-thinning power law viscosity. To investigate the effects of contact angle hysteresis and the non-Newtonian nature of the fluid, simulations of both drainage and imbibition are carried out in order to analyze water and oil saturation-particularly critical parameters such as initial water saturation (Swi) and residual oil saturation (Sor) are assessed in terms of wettability. Additionally, the model sensitivities to the consistency factor (χ), the flow behavior index (n), and the advancing and receding contact angles are tested. Interestingly, the model correctly retrieves the variation in Sor and wettability and predicts behavior over a wide range of contact angles that are difficult to probe experimentally.

2.
J Colloid Interface Sci ; 522: 151-162, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29597127

RESUMO

HYPOTHESIS: The viscosity and stability of CO2/water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. EXPERIMENTS: Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C16-18N(CH3)C3N(CH3)2) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO2/water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. FINDINGS: We demonstrated for the first time stable CO2/water foams at temperatures up to 120 °C and CO2 volumetric fractions up to 0.98 with a single diamine surfactant, C16-18N(CH3)C3N(CH3)2. The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C12-14N(EO)2 and C16-18N(EO)C3N(EO)2.

3.
Polymers (Basel) ; 9(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30965812

RESUMO

Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM). The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM). Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...