Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894225

RESUMO

The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors are expected to reach three billion by 2050, becoming more common in smart environments like buildings, campuses, and healthcare facilities. A notable IoT application is the smart campus for educational purposes. Timely notifications are essential in critical scenarios. IoT devices gather and relay important information in real time to individuals with special needs via mobile applications and connected devices, aiding health-monitoring and decision-making. Ensuring IoT connectivity with end users requires long-range communication, low power consumption, and cost-effectiveness. The LPWAN is a promising technology for meeting these needs, offering a low cost, long range, and minimal power use. Despite their potential, mobile IoT and LPWANs in healthcare, especially for emergency response systems, have not received adequate research attention. Our study evaluated an LPWAN-based emergency response system for visually impaired individuals on the Hazara University campus in Mansehra, Pakistan. Experiments showed that the LPWAN technology is reliable, with 98% reliability, and suitable for implementing emergency response systems in smart campus environments.


Assuntos
Internet das Coisas , Humanos , Aplicativos Móveis , Tecnologia sem Fio
2.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770545

RESUMO

Cloud computing is a fully fledged, matured and flexible computing paradigm that provides services to scientific and business applications in a subscription-based environment. Scientific applications such as Montage and CyberShake are organized scientific workflows with data and compute-intensive tasks and also have some special characteristics. These characteristics include the tasks of scientific workflows that are executed in terms of integration, disintegration, pipeline, and parallelism, and thus require special attention to task management and data-oriented resource scheduling and management. The tasks executed during pipeline are considered as bottleneck executions, the failure of which result in the wholly futile execution, which requires a fault-tolerant-aware execution. The tasks executed during parallelism require similar instances of cloud resources, and thus, cluster-based execution may upgrade the system performance in terms of make-span and execution cost. Therefore, this research work presents a cluster-based, fault-tolerant and data-intensive (CFD) scheduling for scientific applications in cloud environments. The CFD strategy addresses the data intensiveness of tasks of scientific workflows with cluster-based, fault-tolerant mechanisms. The Montage scientific workflow is considered as a simulation and the results of the CFD strategy were compared with three well-known heuristic scheduling policies: (a) MCT, (b) Max-min, and (c) Min-min. The simulation results showed that the CFD strategy reduced the make-span by 14.28%, 20.37%, and 11.77%, respectively, as compared with the existing three policies. Similarly, the CFD reduces the execution cost by 1.27%, 5.3%, and 2.21%, respectively, as compared with the existing three policies. In case of the CFD strategy, the SLA is not violated with regard to time and cost constraints, whereas it is violated by the existing policies numerous times.


Assuntos
Algoritmos , Computação em Nuvem , Simulação por Computador , Heurística , Fluxo de Trabalho
3.
Sensors (Basel) ; 21(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34770615

RESUMO

Cloud computing is an emerging paradigm that offers flexible and seamless services for users based on their needs, including user budget savings. However, the involvement of a vast number of cloud users has made the scheduling of users' tasks (i.e., cloudlets) a challenging issue in selecting suitable data centres, servers (hosts), and virtual machines (VMs). Cloudlet scheduling is an NP-complete problem that can be solved using various meta-heuristic algorithms, which are quite popular due to their effectiveness. Massive user tasks and rapid growth in cloud resources have become increasingly complex challenges; therefore, an efficient algorithm is necessary for allocating cloudlets efficiently to attain better execution times, resource utilisation, and waiting times. This paper proposes a cloudlet scheduling, locust inspired algorithm to reduce the average makespan and waiting time and to boost VM and server utilisation. The CloudSim toolkit was used to evaluate our algorithm's efficiency, and the obtained results revealed that our algorithm outperforms other state-of-the-art nature-inspired algorithms, improving the average makespan, waiting time, and resource utilisation.


Assuntos
Computação em Nuvem , Gafanhotos , Algoritmos , Animais , Computadores , Heurística
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...