Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 144: 104469, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525990

RESUMO

The increased human activities and the worldwide population growth are constantly increasing the production of solid wastes. Over the years, waste management has thus become a prominent issue for several companies and municipalities, and several engineering techniques have been developed over the years in order to convert wastes into other solid materials or fuels. Yet, several techniques are important contributors to environmental pollution, and biological-based solutions have thus become progressively very popular. In particular, insect-based conversion of organic wastes represent eco-friendly tools, and the growth and development of insect species such as the black soldier fly have been tested and improved for a large diversity of organic wastes. However, organic wastes, including food wastes, may contain several pollutants such as heavy metals and catechol which could affect the bioconversion efficiency by incurring physiological costs that would be undetectable at the organismal level, i.e. have null to little effects on the life cycle of Hermetia illucens. In this context, assessments of antioxidant capacities can provide a rapid and low-cost evaluation of the capability of insects to handle exposure to heavy metals and catechol. Here, we aimed at measuring the physiological responses of the black soldier fly H. illucens grown on food wastes (kitchen, fruit or vegetable wastes) contaminated by cadmium, iron, lead or catechol. Biomarkers of oxidative stress (concentrations of hydrogen peroxide and protein carbonyls), non-enzymatic total antioxidant capacity (ascorbic acid amounts) and activity of enzymatic antioxidants (activities of superoxide dismutase and polyphenoloxidase) were measured from the gut of the larvae. We found no evidence of deleterious impacts of food waste contamination by catechol or heavy metals on H. illucens. In most experimental treatments, the array of physiological endpoints we measured for evaluating the degree of oxidative stress experienced by the larvae remained similar to controls. Possible physiological effects were reported for cadmium and catechol only, which tended to increase the oxidation of proteins and hydrogen peroxide in the larvae. Finally, our results suggested that the nature of the food waste could equally affect the physiological responses of the insect.


Assuntos
Dípteros , Metais Pesados , Eliminação de Resíduos , Humanos , Animais , Cádmio/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Larva , Metais Pesados/metabolismo , Frutas , Catecóis/metabolismo
2.
Bioresour Technol ; 364: 128088, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216282

RESUMO

The ever-increasing quantity of greenhouse gases in the atmosphere can be attributed to the rapid increase in the world population as well as the expansion of globalization. Hence, achieving carbon neutrality by 2050 stands as a challenging task to accomplish. Global industrialization had necessitated the need to enhance the current production systems to reduce greenhouse gases emission, whilst promoting the capture of carbon dioxide from atmosphere. Hydrogen is often touted as the fuel of future via substituting fossil-based fuels. In this regard, renewable hydrogen happens to be a niche sector of novel technologies in achieving carbon neutrality. Microalgae-based biohydrogen technologies could be a sustainable and economical approach to produce hydrogen from a renewable source, while simultaneously promoting the absorption of carbon dioxide. This review highlights the current perspectives of biohydrogen production as an alternate source of energy. In addition, future challenges associated with biohydrogen production at large-scale application, storage and transportation are included. Key technologies in producing biohydrogen are finally described in building a carbon-neutral future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...