Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 16(9): 1549-1563, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34053009

RESUMO

PURPOSE: Liver cancer is one of the most common types of cancers in Asia with a high mortality rate. A common method for liver cancer diagnosis is the manual examination of histopathology images. Due to its laborious nature, we focus on alternate deep learning methods for automatic diagnosis, providing significant advantages over manual methods. In this paper, we propose a novel deep learning framework to perform multi-class cancer classification of liver hepatocellular carcinoma (HCC) tumor histopathology images which shows improvements in inference speed and classification quality over other competitive methods. METHOD: The BreastNet architecture proposed by Togacar et al. shows great promise in using convolutional block attention modules (CBAM) for effective cancer classification in H&E stained breast histopathology images. As part of our experiments with this framework, we have studied the addition of atrous spatial pyramid pooling (ASPP) blocks to effectively capture multi-scale features in H&E stained liver histopathology data. We classify liver histopathology data into four classes, namely the non-cancerous class, low sub-type liver HCC tumor, medium sub-type liver HCC tumor, and high sub-type liver HCC tumor. To prove the robustness and efficacy of our models, we have shown results for two liver histopathology datasets-a novel KMC dataset and the TCGA dataset. RESULTS: Our proposed architecture outperforms state-of-the-art architectures for multi-class cancer classification of HCC histopathology images, not just in terms of quality of classification, but also in computational efficiency on the novel proposed KMC liver data and the publicly available TCGA-LIHC dataset. We have considered precision, recall, F1-score, intersection over union (IoU), accuracy, number of parameters, and FLOPs as metrics for comparison. The results of our meticulous experiments have shown improved classification performance along with added efficiency. LiverNet has been observed to outperform all other frameworks in all metrics under comparison with an approximate improvement of [Formula: see text] in accuracy and F1-score on the KMC and TCGA-LIHC datasets. CONCLUSION: To the best of our knowledge, our work is among the first to provide concrete proof and demonstrate results for a successful deep learning architecture to handle multi-class HCC histopathology image classification among various sub-types of liver HCC tumor. Our method shows a high accuracy of [Formula: see text] on the proposed KMC liver dataset requiring only 0.5739 million parameters and 1.1934 million floating point operations per second.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/diagnóstico por imagem
2.
Comput Biol Med ; 128: 104075, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190012

RESUMO

The nuclei segmentation of hematoxylin and eosin (H&E) stained histopathology images is an important prerequisite in designing a computer-aided diagnostics (CAD) system for cancer diagnosis and prognosis. Automated nuclei segmentation methods enable the qualitative and quantitative analysis of tens of thousands of nuclei within H&E stained histopathology images. However, a major challenge during nuclei segmentation is the segmentation of variable sized, touching nuclei. To address this challenge, we present NucleiSegNet - a robust deep learning network architecture for the nuclei segmentation of H&E stained liver cancer histopathology images. Our proposed architecture includes three blocks: a robust residual block, a bottleneck block, and an attention decoder block. The robust residual block is a newly proposed block for the efficient extraction of high-level semantic maps. The attention decoder block uses a new attention mechanism for efficient object localization, and it improves the proposed architecture's performance by reducing false positives. When applied to nuclei segmentation tasks, the proposed deep-learning architecture yielded superior results compared to state-of-the-art nuclei segmentation methods. We applied our proposed deep learning architecture for nuclei segmentation to a set of H&E stained histopathology images from two datasets, and our comprehensive results show that our proposed architecture outperforms state-of-the-art methods. As part of this work, we also introduced a new liver dataset (KMC liver dataset) of H&E stained liver cancer histopathology image tiles, containing 80 images with annotated nuclei procured from Kasturba Medical College (KMC), Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India. The proposed model's source code is available at https://github.com/shyamfec/NucleiSegNet.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Núcleo Celular , Humanos , Processamento de Imagem Assistida por Computador , Índia , Neoplasias Hepáticas/diagnóstico por imagem , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...