Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Biochem Mol Biol ; 12(1): 1-12, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37724158

RESUMO

Background: Cinnamic acid, a phenylpropanoid acid, has been investigated as a potential alternative therapy for diabetes and its complications in some studies. Methods: In the first stage, the viability of HepG2 cells at different concentrations of glucose and CA was assessed by MTT assay. Oxidative stress markers) CAT, GPx, GSH, and MDA) were measured spectrophotometrically. After RNA extraction, the effect of different concentrations of CA on the expression of DPP4 and inflammatory factors (IL-6, NF- κB) in HepG2 cells was assessed using real-time PCR. Results: In HepG2 cells, CA increased catalase and glutathione peroxidase activity and GSH production in a dose-dependent manner in the presence of high glucose concentrations, with the greatest effect seen at a concentration of 75 mg/ml. Also, it reduced the amount of MDA in high-glucose HepG2 cells. Furthermore, CA decreased the expression of DPP4, NF- κB, and IL-6 genes in HepG2 cells in the presence of high glucose levels. Conclusions: The results of our study indicated that CA reduced hyperglycemia-induced complications in HepG2 cells by decreasing inflammatory gene expression, including IL-6 and NF- κB and inhibiting the expression of DPP4, and limiting oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...