Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923652

RESUMO

Climate change poses an existential threat to coral reefs. A warmer and more acidic ocean weakens coral ecosystems and increases the intensity of hurricanes. The wind-wave-current interactions during a hurricane deeply change the ocean circulation patterns and hence potentially affect the dispersal of coral larvae and coral disease agents. Here, we modeled the impact of major hurricane Irma (September 2017) on coral larval and stony coral tissue loss disease (SCTLD) connectivity in Florida's Coral Reef. We coupled high-resolution coastal ocean circulation and wave models to simulate the dispersal of virtual coral larvae and disease agents between thousands of reefs. While being a brief event, our results suggest the passage of hurricane Irma strongly increased the probability of long-distance exchanges while reducing larval supply. It created new connections that could promote coral resilience but also probably accelerated the spread of SCTLD by about a month. As they become more intense, hurricanes' double-edged effect will become increasingly pronounced, contributing to increased variability in transport patterns and an accelerated rate of change within coral reef ecosystems.


Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Tempestades Ciclônicas , Antozoários/fisiologia , Animais , Florida , Larva/fisiologia , Larva/crescimento & desenvolvimento , Modelos Teóricos
2.
PLoS One ; 19(1): e0296715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295030

RESUMO

Qatar's rapid industrialization, notably in its capital city Doha, has spurred a surge in land reclamation projects, leading to a constriction of the entrance to Doha Bay. By reducing and deflecting the ocean circulation, land reclamation projects have reduced the effective dispersion of wastewater introduced into the bay and hence degraded the water quality. Here, we assess fluctuations in water residence time across three distinct eras (1980, 2000, and 2020) to gauge the impact of successive land reclamation developments. To do this, we couple the multi-scale ocean model SLIM with a Lagrangian model for water residence time within Doha's coastal area. We consider three different topographies of Doha's shoreline to identify which artificial structures contributed the most to increase water residence time. Our findings reveal that the residual ocean circulation in Doha Bay was predominantly impacted by northern developments post-2000. Between 1980 and 2000, the bay's residence time saw a modest rise, of about one day on average. However, this was followed by a substantial surge, of three to six days on average, between 2000 and 2020, which is mostly attributable to The Pearl mega artificial island development. Certain regions of the bay witnessed a tripling of water residence time. Given the ongoing population expansion along the coast, it is anticipated that the growth of artificial structures and coastal reclamation will persist, thereby exacerbating the accumulation of pollutants in the bay. Our findings suggest that artificial offshore structures can exert far-reaching, non-local impacts on water quality, which need to be properly assessed during the planning stages of such developments.


Assuntos
Baías , Poluentes Ambientais , Catar , Baías/química , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...