Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(212): 20230630, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442859

RESUMO

Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus. We compare the results of our deep learning approach with experiments and with the results of a state-of-the-art analytical model. To that end, we propose a systematic methodology to assess the faithfulness of a collective motion model, exploiting a set of stringent individual and collective spatio-temporal observables. We demonstrate that machine learning (ML) models of social interactions can directly compete with their analytical counterparts in reproducing subtle experimental observables. Moreover, this work emphasizes the need for consistent validation across different timescales, and identifies key design aspects that enable our deep learning approach to capture both short- and long-term dynamics. We also show that our approach can be extended to larger groups without any retraining, and to other fish species, while retaining the same architecture of the deep learning network. Finally, we discuss the added value of ML in the context of the study of collective motion in animal groups and its potential as a complementary approach to analytical models.


Assuntos
Aprendizado Profundo , Animais , Comportamento de Massa , Peixes , Aprendizado de Máquina , Movimento (Física)
2.
J Expo Sci Environ Epidemiol ; 33(3): 396-406, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347935

RESUMO

BACKGROUND: Modern health concerns related to air pollutant exposure in buildings have been exacerbated owing to several factors. Methods for assessing inhalation exposures indoors have been restricted to stationary air pollution measurements, typically assuming steady-state conditions. OBJECTIVE: We aimed to examine the feasibility of several proxy methods for estimating inhalation exposure to CO2, PM2.5, and PM10 in simulated office environments. METHODS: In a controlled climate chamber mimicking four different office setups, human participants performed a set of scripted sitting and standing office activities. Three proxy sensing techniques were examined: stationary indoor air quality (IAQ) monitoring, individual monitoring of physiological status by wearable wristband, human presence detection by Passive Infrared (PIR) sensors. A ground-truth of occupancy was obtained from video recordings of network cameras. The results were compared with the concurrent IAQ measurements in the breathing zone of a reference participant by means of multiple linear regression (MLR) analysis with a combination of different input parameters. RESULTS: Segregating data onto sitting and standing activities could lead to improved accuracy of exposure estimation model for CO2 and PM by 9-60% during sitting activities, relative to combined activities. Stationary PM2.5 and PM10 monitors positioned at the ceiling-mounted ventilation exhaust in vicinity of the seated reference participant accurately estimated inhalation exposure (adjusted R² = 0.91 and R² = 0.87). Measurement at the front edge of the desk near abdomen showed a moderate accuracy (adjusted R² = 0.58) in estimating exposure to CO2. Combining different sensing techniques improved the CO2 exposure detection by twofold, whereas the improvement for PM exposure detection was small (~10%). SIGNIFICANCE: This study contributes to broadening the knowledge of proxy methods for personal exposure estimation under dynamic occupancy profiles. The study recommendations on optimal monitor combination and placement could help stakeholders better understand spatial air pollutant gradients indoors which can ultimately improve control of IAQ.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Exposição por Inalação/análise , Material Particulado/análise , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise
3.
J Am Med Inform Assoc ; 27(8): 1316-1320, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712656

RESUMO

OBJECTIVE: Hand hygiene is essential for preventing hospital-acquired infections but is difficult to accurately track. The gold-standard (human auditors) is insufficient for assessing true overall compliance. Computer vision technology has the ability to perform more accurate appraisals. Our primary objective was to evaluate if a computer vision algorithm could accurately observe hand hygiene dispenser use in images captured by depth sensors. MATERIALS AND METHODS: Sixteen depth sensors were installed on one hospital unit. Images were collected continuously from March to August 2017. Utilizing a convolutional neural network, a machine learning algorithm was trained to detect hand hygiene dispenser use in the images. The algorithm's accuracy was then compared with simultaneous in-person observations of hand hygiene dispenser usage. Concordance rate between human observation and algorithm's assessment was calculated. Ground truth was established by blinded annotation of the entire image set. Sensitivity and specificity were calculated for both human and machine-level observation. RESULTS: A concordance rate of 96.8% was observed between human and algorithm (kappa = 0.85). Concordance among the 3 independent auditors to establish ground truth was 95.4% (Fleiss's kappa = 0.87). Sensitivity and specificity of the machine learning algorithm were 92.1% and 98.3%, respectively. Human observations showed sensitivity and specificity of 85.2% and 99.4%, respectively. CONCLUSIONS: A computer vision algorithm was equivalent to human observation in detecting hand hygiene dispenser use. Computer vision monitoring has the potential to provide a more complete appraisal of hand hygiene activity in hospitals than the current gold-standard given its ability for continuous coverage of a unit in space and time.


Assuntos
Algoritmos , Higiene das Mãos , Processamento de Imagem Assistida por Computador , Gravação em Vídeo , California , Infecção Hospitalar/prevenção & controle , Hospitais Pediátricos , Humanos , Controle de Infecções , Aprendizado de Máquina , Redes Neurais de Computação , Recursos Humanos em Hospital
4.
NPJ Digit Med ; 2: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304360

RESUMO

Early and frequent patient mobilization substantially mitigates risk for post-intensive care syndrome and long-term functional impairment. We developed and tested computer vision algorithms to detect patient mobilization activities occurring in an adult ICU. Mobility activities were defined as moving the patient into and out of bed, and moving the patient into and out of a chair. A data set of privacy-safe-depth-video images was collected in the Intermountain LDS Hospital ICU, comprising 563 instances of mobility activities and 98,801 total frames of video data from seven wall-mounted depth sensors. In all, 67% of the mobility activity instances were used to train algorithms to detect mobility activity occurrence and duration, and the number of healthcare personnel involved in each activity. The remaining 33% of the mobility instances were used for algorithm evaluation. The algorithm for detecting mobility activities attained a mean specificity of 89.2% and sensitivity of 87.2% over the four activities; the algorithm for quantifying the number of personnel involved attained a mean accuracy of 68.8%.

5.
IEEE Trans Pattern Anal Mach Intell ; 36(5): 874-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-26353223

RESUMO

Local Binary Descriptors are becoming more and more popular for image matching tasks, especially when going mobile. While they are extensively studied in this context, their ability to carry enough information in order to infer the original image is seldom addressed. In this work, we leverage an inverse problem approach to show that it is possible to directly reconstruct the image content from Local Binary Descriptors. This process relies on very broad assumptions besides the knowledge of the pattern of the descriptor at hand. This generalizes previous results that required either a prior learning database or non-binarized features. Furthermore, our reconstruction scheme reveals differences in the way different Local Binary Descriptors capture and encode image information. Hence, the potential applications of our work are multiple, ranging from privacy issues caused by eavesdropping image keypoints streamed by mobile devices to the design of better descriptors through the visualization and the analysis of their geometric content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...