Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 190, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956607

RESUMO

BACKGROUND: Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. RESULTS: In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. CONCLUSIONS: Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.


Assuntos
Anidrases Carbônicas , Biologia Computacional , Escherichia coli , Solubilidade , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética , Biologia Computacional/métodos , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Dióxido de Carbono/metabolismo
2.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682749

RESUMO

Microbial conversion of biomass relies on a complex combination of enzyme systems promoting synergy to overcome biomass recalcitrance. Some thermophilic bacteria have been shown to exhibit particularly high levels of cellulolytic activity, making them of particular interest for biomass conversion. These bacteria use varying combinations of CAZymes that vary in complexity from a single catalytic domain to large multi-modular and multi-functional architectures to deconstruct biomass. Since the discovery of CelA from Caldicellulosiruptor bescii which was identified as one of the most active cellulase so far identified, the search for efficient multi-modular and multi-functional CAZymes has intensified. One of these candidates, GuxA (previously Acel_0615), was recently shown to exhibit synergy with other CAZymes in C. bescii, leading to a dramatic increase in growth on biomass when expressed in this host. GuxA is a multi-modular and multi-functional enzyme from Acidothermus cellulolyticus whose catalytic domains include a xylanase/endoglucanase GH12 and an exoglucanase GH6, representing a unique combination of these two glycoside hydrolase families in a single CAZyme. These attributes make GuxA of particular interest as a potential candidate for thermophilic industrial enzyme preparations. Here, we present a more complete characterization of GuxA to understand the mechanism of its activity and substrate specificity. In addition, we demonstrate that GuxA exhibits high levels of synergism with E1, a companion endoglucanase from A. cellulolyticus. We also present a crystal structure of one of the GuxA domains and dissect the structural features that might contribute to its thermotolerance.


Assuntos
Actinobacteria , Actinomycetales , Celulase , Biomassa , Celulase/química , Celulose/química , Humanos
3.
Proteins ; 89(12): 1647-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561912

RESUMO

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Biologia Computacional , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Sequência de Proteína
4.
Biotechnol Biofuels ; 14(1): 6, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407766

RESUMO

Consolidated bioprocessing using oleaginous yeast is a promising modality for the economic conversion of plant biomass to fuels and chemicals. However, yeast are not known to produce effective biomass degrading enzymes naturally and this trait is essential for efficient consolidated bioprocessing. We expressed a chimeric cellobiohydrolase I gene in three different oleaginous, industrially relevant yeast: Yarrowia lipolytica, Lipomyces starkeyi, and Saccharomyces cerevisiae to study the biochemical and catalytic properties and biomass deconstruction potential of these recombinant enzymes. Our results showed differences in glycosylation, surface charge, thermal and proteolytic stability, and efficacy of biomass digestion. L. starkeyi was shown to be an inferior active cellulase producer compared to both the Y. lipolytica and S. cerevisiae enzymes, whereas the cellulase expressed in S. cerevisiae displayed the lowest activity against dilute-acid-pretreated corn stover. Comparatively, the chimeric cellobiohydrolase I enzyme expressed in Y. lipolytica was found to have a lower extent of glycosylation, better protease stability, and higher activity against dilute-acid-pretreated corn stover.

5.
Biotechnol Biofuels ; 13(1): 186, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33292448

RESUMO

BACKGROUND: Zymomonas mobilis has recently been shown to be capable of producing the valuable platform biochemical, 2,3-butanediol (2,3-BDO). Despite this capability, the production of high titers of 2,3-BDO is restricted by several physiological parameters. One such bottleneck involves the conversion of acetoin to 2,3-BDO, a step catalyzed by 2,3-butanediol dehydrogenase (Bdh). Several Bdh enzymes have been successfully expressed in Z. mobilis, although a highly active enzyme is yet to be identified for expression in this host. Here, we report the application of a phylogenetic approach to identify and characterize a superior Bdh, followed by validation of its structural attributes using a mutagenesis approach. RESULTS: Of the 11 distinct bdh genes that were expressed in Z. mobilis, crude extracts expressing Serratia marcescens Bdh (SmBdh) were found to have the highest activity (8.89 µmol/min/mg), when compared to other Bdh enzymes (0.34-2.87 µmol/min/mg). The SmBdh crystal structure was determined through crystallization with cofactor (NAD+) and substrate (acetoin) molecules bound in the active site. Active SmBdh was shown to be a tetramer with the active site populated by a Gln247 residue contributed by the diagonally opposite subunit. SmBdh showed a more extensive supporting hydrogen-bond network in comparison to the other well-studied Bdh enzymes, which enables improved substrate positioning and substrate specificity. This protein also contains a short α6 helix, which provides more efficient entry and exit of molecules from the active site, thereby contributing to enhanced substrate turnover. Extending the α6 helix to mimic the lower activity Enterobacter cloacae (EcBdh) enzyme resulted in reduction of SmBdh function to nearly 3% of the total activity. In great contrast, reduction of the corresponding α6 helix of the EcBdh to mimic the SmBdh structure resulted in ~ 70% increase in its activity. CONCLUSIONS: This study has demonstrated that SmBdh is superior to other Bdhs for expression in Z. mobilis for 2,3-BDO production. SmBdh possesses unique structural features that confer biochemical advantage to this protein. While coordinated active site formation is a unique structural characteristic of this tetrameric complex, the smaller α6 helix and extended hydrogen network contribute towards improved activity and substrate promiscuity of the enzyme.

6.
Methods Mol Biol ; 2096: 125-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32720151

RESUMO

The metabolic enzymes like any enzymes generally display globular architecture where secondary structure elements and interactions between them preserve the spatial organization of the protein. A typical enzyme features a well-defined active site, designed for selective binding of the reaction substrate and facilitating a chemical reaction converting the substrate into a product. While many chemical reactions could be facilitated using only the functional groups that are found in proteins, the large percentage or intracellular reactions require use of cofactors, varying from single metal ions to relatively large molecules like numerous coenzymes, nucleotides and their derivatives, dinucleotides or hemes. Quite often these large cofactors become important not only for the catalytic function of the enzyme but also for the structural stability of it, as those are buried deep in the enzyme.


Assuntos
Cristalografia por Raios X/métodos , Enzimas/química , Oxirredutases do Álcool/química , Sítios de Ligação , Coenzimas/metabolismo , Cristalização , Klebsiella pneumoniae/enzimologia , Modelos Moleculares , NAD/metabolismo , Estereoisomerismo , Especificidade por Substrato
7.
Plant Cell ; 32(7): 2367-2382, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32354790

RESUMO

Xylans are a major component of plant cell walls. O-Acetyl moieties are the dominant backbone substituents of glucuronoxylan in dicots and play a major role in the polymer-polymer interactions that are crucial for wall architecture and normal plant development. Here, we describe the biochemical, structural, and mechanistic characterization of Arabidopsis (Arabidopsis thaliana) xylan O-acetyltransferase 1 (XOAT1), a member of the plant-specific Trichome Birefringence Like (TBL) family. Detailed characterization of XOAT1-catalyzed reactions by real-time NMR confirms that it exclusively catalyzes the 2-O-acetylation of xylan, followed by nonenzymatic acetyl migration to the O-3 position, resulting in products that are monoacetylated at both O-2 and O-3 positions. In addition, we report the crystal structure of the catalytic domain of XOAT1, which adopts a unique conformation that bears some similarities to the α/ß/α topology of members of the GDSL-like lipase/acylhydrolase family. Finally, we use a combination of biochemical analyses, mutagenesis, and molecular simulations to show that XOAT1 catalyzes xylan acetylation through formation of an acyl-enzyme intermediate, Ac-Ser-216, by a double displacement bi-bi mechanism involving a Ser-His-Asp catalytic triad and unconventionally uses an Arg residue in the formation of an oxyanion hole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polissacarídeos/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana , Modelos Moleculares , Mutação , Conformação Proteica , Xilanos/metabolismo
9.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478233

RESUMO

Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tapirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tapirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tapirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tapirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tapirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tapirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tapirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Celulose/metabolismo , Firmicutes/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Celulose/química , Firmicutes/química , Firmicutes/genética , Genoma Bacteriano , Fontes Termais/microbiologia , Temperatura Alta , Domínios Proteicos
10.
Biotechnol Biofuels ; 11: 322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524504

RESUMO

The low secretion levels of cellobiohydrolase I (CBHI) in yeasts are one of the key barriers preventing yeast from directly degrading and utilizing lignocellulose. To overcome this obstacle, we have explored the approach of genetically linking an easily secreted protein to CBHI, with CBHI being the last to be folded. The Trichoderma reesei eg2 (TrEGII) gene was selected as the leading gene due to its previously demonstrated outstanding secretion in yeast. To comprehensively characterize the effects of this fusion protein, we tested this hypothesis in three industrially relevant yeasts: Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Our initial assays with the L. starkeyi secretome expressing differing TrEGII domains fused to a chimeric Talaromyces emersonii-T. reesei CBHI (TeTrCBHI) showed that the complete TrEGII enzyme, including the glycoside hydrolase (GH) 5 domain is required for increased expression level of the fusion protein when linked to CBHI. We found that this new construct (TrEGII-TeTrCBHI, Fusion 3) had an increased secretion level of at least threefold in L. starkeyi compared to the expression level of the chimeric TeTrCBHI. However, the same improvements were not observed when Fusion 3 construct was expressed in S. cerevisiae and Y. lipolytica. Digestion of pretreated corn stover with the secretomes of Y. lipolytica and L. starkeyi showed that conversion was much better using Y. lipolytica secretomes (50% versus 29%, respectively). In Y. lipolytica, TeTrCBHI performed better than the fusion construct. Furthermore, S. cerevisiae expression of Fusion 3 construct was poor and only minimal activity was observed when acting on the substrate, pNP-cellobiose. No activity was observed for the pNP-lactose substrate. Clearly, this approach is not universally applicable to all yeasts, but works in specific cases. With purified protein and soluble substrates, the exoglucanase activity of the GH7 domain embedded in the Fusion 3 construct in L. starkeyi was significantly higher than that of the GH7 domain in TeTrCBHI expressed alone. It is probable that a higher fraction of fusion construct CBHI is in an active form in Fusion 3 compared to just TeTrCBHI. We conclude that the strategy of leading TeTrCBHI expression with a linked TrEGII module significantly improved the expression of active CBHI in L. starkeyi.

11.
Biotechnol Biofuels ; 11: 189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002729

RESUMO

BACKGROUND: Strategies for maximizing the microbial production of bio-based chemicals and fuels include eliminating branched points to streamline metabolic pathways. While this is often achieved by removing key enzymes, the introduction of nonnative enzymes can provide metabolic shortcuts, bypassing branched points to decrease the production of undesired side-products. Pyruvate decarboxylase (PDC) can provide such a shortcut in industrially promising thermophilic organisms; yet to date, this enzyme has not been found in any thermophilic organism. Incorporating nonnative enzymes into host organisms can be challenging in cases such as this, where the enzyme has evolved in a very different environment from that of the host. RESULTS: In this study, we use computational protein design to engineer the Zymomonas mobilis PDC to resist thermal denaturation at the growth temperature of a thermophilic host. We generate thirteen PDC variants using the Rosetta protein design software. We measure thermal stability of the wild-type PDC and PDC variants using circular dichroism. We then measure and compare enzyme endurance for wild-type PDC with the PDC variants at an elevated temperature of 60 °C (thermal endurance) using differential interference contrast imaging. CONCLUSIONS: We find that increases in melting temperature (Tm) do not directly correlate with increases in thermal endurance at 60 °C. We also do not find evidence that any individual mutation or design approach is the major contributor to the most thermostable PDC variant. Rather, remarkable cooperativity among sixteen thermostabilizing mutations is key to rationally designing a PDC with significantly enhanced thermal endurance. These results suggest a generalizable iterative computational protein design approach to improve thermal stability and endurance of target enzymes.

12.
Biotechnol Biofuels ; 10: 243, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213309

RESUMO

BACKGROUND: Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The point mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. RESULTS: In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. CONCLUSIONS: The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.

13.
Biotechnol Biofuels ; 10: 274, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213319

RESUMO

Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex with cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.

14.
Microb Cell Fact ; 16(1): 126, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738851

RESUMO

BACKGROUND: Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. RESULTS: To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. CONCLUSIONS: Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.


Assuntos
Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Proteínas Fúngicas/metabolismo , Lipomyces/metabolismo , Domínio Catalítico , Celulase/química , Celulase/genética , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Trichoderma/enzimologia , Yarrowia/metabolismo
15.
Plant J ; 91(6): 931-949, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28670741

RESUMO

The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.


Assuntos
Arabidopsis/enzimologia , Fucosiltransferases/química , Glucanos/química , Modelos Estruturais , Xilanos/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Simulação de Dinâmica Molecular , Mutagênese , Água/metabolismo , Galactosídeo 2-alfa-L-Fucosiltransferase
16.
Photosynth Res ; 128(1): 45-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26526668

RESUMO

The green alga Chlamydomonas reinhardtii contains six plastidic [2Fe2S]-cluster ferredoxins (FDXs), with FDX1 as the predominant isoform under photoautotrophic growth. FDX2 is highly similar to FDX1 and has been shown to interact with specific enzymes (such as nitrite reductase), as well as to share interactors with FDX1, such as the hydrogenases (HYDA), ferredoxin:NAD(P) reductase I (FNR1), and pyruvate:ferredoxin oxidoreductase (PFR1), albeit performing at low catalytic rates. Here we report the FDX2 crystal structure solved at 1.18 Å resolution. Based on differences between the Chlorella fusca FDX1 and C. reinhardtii FDX2 structures, we generated and purified point-mutated versions of the FDX2 protein and assayed them in vitro for their ability to catalyze hydrogen and NADPH photo-production. The data show that structural differences at two amino acid positions contribute to functional differences between FDX1 and FDX2, suggesting that FDX2 might have evolved from FDX1 toward a different physiological role in the cell. Moreover, we demonstrate that the mutations affect both the midpoint potentials of the FDX and kinetics of the FNR reaction, possibly due to altered binding between FDX and FNR. An effect on H2 photo-production rates was also observed, although the kinetics of the reaction were not further characterized.


Assuntos
Chlamydomonas reinhardtii/química , Ferredoxinas/química , Ferredoxinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/genética , Hidrogênio/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , NADP/metabolismo , Oxirredução , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
17.
Proteins ; 84(3): 295-304, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26572060

RESUMO

Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the product inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. The theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/genética , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Termodinâmica
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1946-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26327384

RESUMO

The unique active site of the Caldicellulosiruptor bescii family 3 pectate lyase (PL3) enzyme has been thoroughly characterized using a series of point mutations, X-ray crystallography, pK(a) calculations and biochemical assays. The X-ray structures of seven PL3 active-site mutants, five of them in complex with intact trigalacturonic acid, were solved and characterized structurally, biochemically and computationally. The results confirmed that Lys108 is the catalytic base, but there is no clear candidate for the catalytic acid. However, the reaction mechanism can also be explained by an antiperiplanar trans-elimination reaction, in which Lys108 abstracts a proton from the C5 atom without the help of simultaneous proton donation by an acidic residue. An acidified water molecule completes the anti ß-elimination reaction by protonating the O4 atom of the substrate. Both the C5 hydrogen and C4 hydroxyl groups of the substrate must be orientated in axial configurations, as for galacturonic acid, for this to be possible. The wild-type C. bescii PL3 displays a pH optimum that is lower than that of Bacillus subtilis PL1 according to activity measurements, indicating that C. bescii PL3 has acquired a lower pH optimum by utilizing lysine instead of arginine as the catalytic base, as well as by lowering the pK(a) of the catalytic base in a unique active-site environment.


Assuntos
Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/química , Thermoanaerobacter/enzimologia , Catálise , Cristalografia por Raios X , Modelos Moleculares
19.
J Biol Chem ; 290(17): 10645-56, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25720489

RESUMO

A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tapirins," origin from Maori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tapirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tapirins are specific to these extreme thermophiles. Tapirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tapirins for cellulose. Crystallization of a cellulose-binding truncation from one tapirin indicated that these proteins form a long ß-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tapirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Adsorção , Bactérias/genética , Bactérias/ultraestrutura , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Fímbrias Bacterianas/metabolismo , Genes Bacterianos , Modelos Moleculares , Filogenia , Plantas/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
PLoS One ; 9(12): e111443, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25462572

RESUMO

To develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an ability to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. The successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.


Assuntos
Endo-1,4-beta-Xilanases/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Yarrowia/enzimologia , Biomassa , Celulose/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Microbiologia Industrial , Lignina/química , Espectrometria de Massas , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Xilanos/química , Xilose/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...