Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(39): 45616-45625, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729491

RESUMO

Carbon dots are emerging fluorescent nanomaterials with unique physical and chemical properties and a wide range of applications. Herein, we have designed and successfully synthesized thermally stable green emissive nitrogen-doped carbon dots (NCDs) with a photoluminescent quantum yield of 11.32% through facile solvent-free carbonization. NCDs demonstrated zero thermal quenching upon various temperatures modulating from 20 to 80 °C. The green emissive NCDs perform very stably even after heating them at 80 °C for 1 h. The thermal stability mechanism demonstrates that C═O and C═N functional groups control the particle aggregation and protect the fluorescent hub from photo-oxidation and thermal oxidation. Highly biocompatible CDs exhibit bright, stable, and multicolor emissions in T-ca cells under hot circumstances (25-45 °C). Additionally, NCDs offer long-term stability in the biosystem, as evidenced by the fact that the cell retains its brightness about 70% after prolonging the incubation time to 8 days. Furthermore, the fluorescent NCDs are utilized as in vivo imaging agents in the hot environment as they display bright and thermally stable imaging (27-45 °C) under 488 nm excitation. The results confirmed that the produced thermally stable NCDs could be used in biology and related medical fields that require hot environment imaging.

2.
Nanoscale ; 13(7): 4301-4307, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33595575

RESUMO

High stability and water solubility of fluorescent nanomaterials are considered key factors to evaluate their feasibility for fundamental applications. Herein, water-soluble and thermally stable, green-emitting carbon nanodots (CNDs) have been synthesized via a facile hydrothermal method with an average size of 1.9 nm. CNDs showed green emission centered at 544 nm with the photo-luminescence quantum yield (PLQY) of up to 10.1% under the excitation of 400 nm. The obtained CNDs demonstrated high resistance towards photo-bleaching and an ionic (KCl) environment. Moreover, the aqueous solution of CNDs exhibited excellent stability under harsh thermal conditions from 10 °C to 80 °C. The as-prepared CNDs showed stable performance at high temperatures, even after keeping them at 80 °C for 30 min. Furthermore, the green emissive CNDs were incubated in T-ca cancer cells for bio-imaging applications. The results indicated that CNDs can served as an effective thermally-stable bio-imaging agent in T-ca cells at the physiological temperature range of 25 °C-45 °C. Green emission and excellent thermal stability make these CNDs promising fluorescent materials for potential applications in the medical field, which requires long-wavelength fluorescence and high-temperature imaging.


Assuntos
Carbono , Nanoestruturas , Corantes , Microscopia de Fluorescência , Água
3.
ACS Appl Bio Mater ; 4(7): 5786-5796, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006753

RESUMO

Fluorescent sensing of temperature in nanoscale regions has many advantages and applications in the biological field. Herein, blue emitting carbon dots (CDs) are designed and successfully developed using a one step hydrothermal method. As synthesized CDs exhibit temperature dependent photoluminescent (PL) intensity and PL decay lifetime over the physiological temperature ranging from room temperature (RT) to 70 °C. The PL intensity and PL decay lifetime of the obtained CDs correlate linearly to temperature (RT-70 °C) with correlation coefficient of 0.997 and 0.996, respectively. Additionally, dual mode thermal sensing (PL intensity/lifetime) make these CDs a promising optical nanothermometer over alternative semiconductors quantum dots and CD-based quantum dots. Moreover, the resultant aqueous CDs demonstrate excitation-independent blue emission, and the PL quantum yield (QY) is reached at 44.5%. The obtained CDs illustrate stable performance to high ionic environments and photobleaching even after keeping them for 2 h under continues UV irradiation. Furthermore, blue emitting CDs have low cytotoxicity for T-ca. cells and illuminate deep blue fluorescence under the excitation of 406 nm. As a result, high thermal sensitivity of these fluorescent CDs has potential to detect temperature in living cells in the range of 25-40 °C.


Assuntos
Carbono , Pontos Quânticos , Fluorescência , Corantes Fluorescentes , Pontos Quânticos/toxicidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...