Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(31): 11205-11213, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28749520

RESUMO

Monochiral (7,5) single walled carbon nanotubes (SWCNTs) are integrated into a field effect transistor device in which the built-in electric field at the nanotube/metal contact allows for exciton separation under illumination. Variable wavelength spectroscopy and 2D surface mapping of devices consisting of 10-20 nanotubes are performed in the visible region and a strong correlation between the nanotube's second optical transition (S22) and the photocurrent is found. After integration, the SWCNTs are non-covalently modified with three different fluorescent dye molecules with off-resonant absorption maxima at 532 nm, 565 nm, and 610 nm. The dyes extend the absorption properties of the nanotube and contribute to the photocurrent. This approach holds promise for the development of photo-detectors and for applications in photovoltaics and biosensing.

2.
Nanotechnology ; 26(32): 325202, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26207014

RESUMO

Graphene is of increasing interest for optoelectronic applications exploiting light detection, light emission and light modulation. Intrinsically, the light-matter interaction in graphene is of a broadband type. However, by integrating graphene into optical micro-cavities narrow-band light emitters and detectors have also been demonstrated. These devices benefit from the transparency, conductivity and processability of the atomically thin material. To this end, we explore in this work the feasibility of replacing graphene with nanocrystalline graphene, a material which can be grown on dielectric surfaces without catalyst by graphitization of polymeric films. We have studied the formation of nanocrystalline graphene on various substrates and under different graphitization conditions. The samples were characterized by resistance, optical transmission, Raman and x-ray photoelectron spectroscopy, atomic force microscopy and electron microscopy measurements. The conducting and transparent wafer-scale material with nanometer grain size was also patterned and integrated into devices for studying light-matter interaction. The measurements show that nanocrystalline graphene can be exploited as an incandescent emitter and bolometric detector similar to crystalline graphene. Moreover the material exhibits piezoresistive behavior which makes nanocrystalline graphene interesting for transparent strain sensors.

3.
ACS Nano ; 8(9): 9324-31, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25117458

RESUMO

Variable-wavelength photocurrent microscopy and photocurrent spectroscopy are used to study the photoresponse of (n, m) sorted single-walled carbon nanotube (SWNT) devices. The measurements of (n, m) pure SWCNT devices demonstrate the ability to study the wavelength-dependent photoresponse in situ in a device configuration and deliver photocurrent spectra that reflect the population of the source material. Furthermore, we show that it is possible to map and determine the chirality population within a working optoelectronic SWCNT device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...