Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38733036

RESUMO

Low-cost ambient sensors have been identified as a promising technology for monitoring air pollution at a high spatio-temporal resolution. However, the pollutant data captured by these cost-effective sensors are less accurate than their conventional counterparts and require careful calibration to improve their accuracy and reliability. In this paper, we propose to leverage temporal information, such as the duration of time a sensor has been deployed and the time of day the reading was taken, in order to improve the calibration of low-cost sensors. This information is readily available and has so far not been utilized in the reported literature for the calibration of cost-effective ambient gas pollutant sensors. We make use of three data sets collected by research groups around the world, who gathered the data from field-deployed low-cost CO and NO2 sensors co-located with accurate reference sensors. Our investigation shows that using the temporal information as a co-variate can significantly improve the accuracy of common machine learning-based calibration techniques, such as Random Forest and Long Short-Term Memory.

2.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050481

RESUMO

Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces (HMIs) and smart living. This paper reports the development and testing of a static hand gesture recognition system using capacitive sensing. Our system consists of a 6×18 array of capacitive sensors that captured five gestures-Palm, Fist, Middle, OK, and Index-of five participants to create a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each classifier was trained five times; each time, the classifier was trained using four different participants' gestures and tested with one different participant's gestures. The MLP classifier performed the best, achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable method for implementing a non-contact, static hand gesture recognition system.


Assuntos
Gestos , Reconhecimento Automatizado de Padrão , Humanos , Teorema de Bayes , Reconhecimento Automatizado de Padrão/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Mãos , Algoritmos
3.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679650

RESUMO

The advent of cost-effective sensors and the rise of the Internet of Things (IoT) presents the opportunity to monitor urban pollution at a high spatio-temporal resolution. However, these sensors suffer from poor accuracy that can be improved through calibration. In this paper, we propose to use One Dimensional Convolutional Neural Network (1DCNN) based calibration for low-cost carbon monoxide sensors and benchmark its performance against several Machine Learning (ML) based calibration techniques. We make use of three large data sets collected by research groups around the world from field-deployed low-cost sensors co-located with accurate reference sensors. Our investigation shows that 1DCNN performs consistently across all datasets. Gradient boosting regression, another ML technique that has not been widely explored for gas sensor calibration, also performs reasonably well. For all datasets, the introduction of temperature and relative humidity data improves the calibration accuracy. Cross-sensitivity to other pollutants can be exploited to improve the accuracy further. This suggests that low-cost sensors should be deployed as a suite or an array to measure covariate factors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Calibragem , Monitoramento Ambiental/métodos , Poluição do Ar/análise
4.
Ultrasonics ; 129: 106912, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36528907

RESUMO

The stiffness of wood can be estimated from the acoustic velocity in the longitudinal direction. Studies have reported that stiffness measurements obtained using time-of-flight acoustic velocity measurements are overestimated compared to those obtained using the acoustic resonance and bending test methods. More research is needed to understand what is causing this phenomenon. In this work, amplitude threshold time-of-flight, resonance, and guided wave measurements are performed on wooden and aluminium rods. Using guided wave theory, it is shown through simulations and experimental results that dispersion causes an overestimation of time-of-flight measurements. This overestimation was able to be mitigated using dispersion compensation. However, other guided wave techniques could potentially be used to obtain improved measurements.


Assuntos
Técnicas de Imagem por Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia , Acústica , Vibração , Imagens de Fantasmas
5.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236306

RESUMO

In recent publications, capacitive sensing floors have been shown to be able to localize individuals in an unobtrusive manner. This paper demonstrates that it might be possible to utilize the walking characteristics extracted from a capacitive floor to recognize subject and gender. Several neural network-based machine learning techniques are developed for recognizing the gender and identity of a target. These algorithms were trained and validated using a dataset constructed from the information captured from 23 subjects while walking, alone, on the sensing floor. A deep neural network comprising a Bi-directional Long Short-Term Memory (BLSTM) provided the most accurate identity performance, classifying individuals with an accuracy of 98.12% on the test data. On the other hand, a Convolutional Neural Network (CNN) was the most accurate for gender recognition, attaining an accuracy of 93.3%. The neural network-based algorithms are benchmarked against Support Vector Machine (SVM), which is a classifier used in many reported works for floor-based recognition tasks. The majority of the neural networks outperform SVM across all accuracy metrics.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Humanos , Máquina de Vetores de Suporte
6.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808363

RESUMO

Blockchain technology, with its decentralization characteristics, immutability, and traceability, is well-suited for facilitating secure storage, sharing, and management of data in decentralized Internet of Things (IoT) applications. Despite the increasing development of blockchain platforms, there is still no comprehensive approach for adopting blockchain technology in IoT systems. This is due to the blockchain's limited capability to process substantial transaction requests from a massive number of IoT devices. Hyperledger Fabric (HLF) is a popular open-source permissioned blockchain platform hosted by the Linux Foundation. This article reports a comprehensive empirical study that measures HLF's performance and identifies potential performance bottlenecks to better meet the requirements of blockchain-based IoT applications. The study considers the implementation of HLF on distributed large-scale IoT systems. First, a model for monitoring the performance of the HLF platform is presented. It addresses the overhead challenges while delivering more details on system performance and better scalability. Then, the proposed framework is implemented to evaluate the impact of varying network workloads on the performance of the blockchain platform in a large-scale distributed environment. In particular, the performance of the HLF is evaluated in terms of throughput, latency, network size, scalability, and the number of peers serviceable by the platform. The obtained experimental results indicate that the proposed framework can provide detailed real-time performance evaluation of blockchain systems for large-scale IoT applications.

7.
Sensors (Basel) ; 22(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684799

RESUMO

This work investigates the performance of five depth cameras in relation to their potential for grape yield estimation. The technologies used by these cameras include structured light (Kinect V1), active infrared stereoscopy (RealSense D415), time of flight (Kinect V2 and Kinect Azure), and LiDAR (Intel L515). To evaluate their suitability for grape yield estimation, a range of factors were investigated including their performance in and out of direct sunlight, their ability to accurately measure the shape of the grapes, and their potential to facilitate counting and sizing of individual berries. The depth cameras' performance was benchmarked using high-resolution photogrammetry scans. All the cameras except the Kinect V1 were able to operate in direct sunlight. Indoors, the RealSense D415 camera provided the most accurate depth scans of grape bunches, with a 2 mm average depth error relative to photogrammetric scans. However, its performance was reduced in direct sunlight. The time of flight and LiDAR cameras provided depth scans of grapes that had about an 8 mm depth bias. Furthermore, the individual berries manifested in the scans as pointed shape distortions. This led to an underestimation of berry sizes when applying the RANSAC sphere fitting but may help with the detection of individual berries with more advanced algorithms. Applying an opaque coating to the surface of the grapes reduced the observed distance bias and shape distortion. This indicated that these are likely caused by the cameras' transmitted light experiencing diffused scattering within the grapes. More work is needed to investigate if this distortion can be used for enhanced measurement of grape properties such as ripeness and berry size.


Assuntos
Vitis , Algoritmos , Frutas
8.
Ultrasonics ; 119: 106583, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34634730

RESUMO

Research related to acoustic/ultrasonic guided wave testing in wood is still at an early stage. This paper describes the first study to perform ultrasonic guided wave measurements in a wooden rod using arrays of shear transducers. Enhancement of either longitudinal L(0,1) or torsional T(0,1) wave modes and suppression of other modes was able to be achieved using these arrays. At low frequencies, it was found that the L(0,1) wave mode had a similar speed to that obtained using the traditional resonance and time of flight methods. The torsional T(0,1) wave mode has not been used before for non-destructive testing of wood. Since it is non-dispersive, it would appear to be suitable for wood property estimation and structural health monitoring of wooden structures. These results indicate that ultrasonic guided wave testing techniques have strong potential to be used to provide improved measurement of wood properties and structural health monitoring of wooden structures.

9.
Sensors (Basel) ; 21(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066704

RESUMO

This paper presents an autonomous method of collecting data for Visible Light Positioning (VLP) and a comprehensive investigation of VLP using a large set of experimental data. Received Signal Strength (RSS) data are efficiently collected using a novel method that utilizes consumer grade Virtual Reality (VR) tracking for accurate ground truth recording. An investigation into the accuracy of the ground truth system showed median and 90th percentile errors of 4.24 and 7.35 mm, respectively. Co-locating a VR tracker with a photodiode-equipped VLP receiver on a mobile robotic platform allows fingerprinting on a scale and accuracy that has not been possible with traditional manual collection methods. RSS data at 7344 locations within a 6.3 × 6.9 m test space fitted with 11 VLP luminaires is collected and has been made available for researchers. The quality and the volume of the data allow for a robust study of Machine Learning (ML)- and channel model-based positioning utilizing visible light. Among the ML-based techniques, ridge regression is found to be the most accurate, outperforming Weighted k Nearest Neighbor, Multilayer Perceptron, and random forest, among others. Model-based positioning is more accurate than ML techniques when a small data set is available for calibration and training. However, if a large data set is available for training, ML-based positioning outperforms its model-based counterparts in terms of localization accuracy.

10.
Sensors (Basel) ; 21(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804742

RESUMO

Grape yield estimation has traditionally been performed using manual techniques. However, these tend to be labour intensive and can be inaccurate. Computer vision techniques have therefore been developed for automated grape yield estimation. However, errors occur when grapes are occluded by leaves, other bunches, etc. Synthetic aperture radar has been investigated to allow imaging through leaves to detect occluded grapes. However, such equipment can be expensive. This paper investigates the potential for using ultrasound to image through leaves and identify occluded grapes. A highly directional low frequency ultrasonic array composed of ultrasonic air-coupled transducers and microphones is used to image grapes through leaves. A fan is used to help differentiate between ultrasonic reflections from grapes and leaves. Improved resolution and detail are achieved with chirp excitation waveforms and near-field focusing of the array. The overestimation in grape volume estimation using ultrasound reduced from 222% to 112% compared to the 3D scan obtained using photogrammetry or from 56% to 2.5% compared to a convex hull of this 3D scan. This also has the added benefit of producing more accurate canopy volume estimations which are important for common precision viticulture management processes such as variable rate applications.

11.
Sensors (Basel) ; 21(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498860

RESUMO

The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.

12.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430274

RESUMO

Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems' scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.

13.
Sensors (Basel) ; 20(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993039

RESUMO

Next generation cellular systems need efficient content-distribution schemes. Content-sharing via Device-to-Device (D2D) clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. In this article, we utilize Content-Centric Networking and Network Virtualization to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multifactor clustering algorithm is proposed for grouping the D2D User Equipment (DUEs) sharing a common interest. The proposed algorithm is evaluated in terms of energy efficiency, area spectral efficiency, and throughput. The effect of the number of clusters on these performance parameters is also discussed. The proposed algorithm has been further modified to allow for a tradeoff between fairness and other performance parameters. A comprehensive simulation study demonstrates that the proposed clustering algorithm is more flexible and outperforms several classical and state-of-the-art algorithms.

14.
AACE Clin Case Rep ; 6(3): e117-e122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524024

RESUMO

OBJECTIVE: Disorders of sex development (DSD) are defined as conditions in which chromosomal sex is inconsistent with phenotypic sex, or in which the phenotype is not classifiable as either male or female. Mutations in genes present in X, Y or autosomal chromosomes can cause abnormalities of testis determination or 46,XY DSD. Leydig cell hypoplasia (LCH), also known as Leydig cell agenesis, is a rare autosomal recessive endocrine syndrome of 46,XY DSD. Our objective here is to present the case of a 27-year-old, phenotypic female who presented with primary amenorrhea and later found to have LCH. METHODS: We used formatted history and clinical examination followed by necessary hormonal investigations. The diagnosis was confirmed by histopathology of resected testes and genetic mutation analysis. RESULTS: The patient's physical examination was unremarkable except 2 ovoid lumps present in the inguinovulvar region. There were no müllerian structures on sonography. Estrogen and both basal and stimulated testosterone levels were low whereas luteinizing hormone and follicle-stimulating hormone were high. Her chromosomal sex was found to be 46,XY. The histopathology of the resected inguinal lumps showed atrophic testicular change lacking Leydig cells with relative preservation of Sertoli cells. Genetic mutation analysis failed to reveal any significant aberration in the LHCGR gene. At present she is on estrogen replacement therapy having undergone bilateral orchidectomy and vaginoplasty. CONCLUSION: LCH represents a unique example of diagnostic dilemma in gender identification. It requires a multidisciplinary approach for optimum outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...